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Abstract

We provide general formulation of weak identification in semiparametric mod-

els and a novel efficiency concept. Weak identification occurs when a parameter

is weakly regular, i.e., when it depends on the score asymptotically. When this

happens, consistent or equivariant estimation is shown to be impossible. We then

show that behind every weakly regular parameter there exists an underlying pa-

rameter that is regular and fully characterizes the weakly regular parameter.

While this parameter is not unique, concepts of sufficiency and minimality help

pin down the desirable choice. If the estimation of minimal sufficient underly-

ing parameters is inefficient, it introduces noise in the corresponding estimation

of weakly regular parameters, whence we can improve the estimators by local

asymptotic Rao-Blackwellization. We call an estimator weakly efficient if it at-

tains an asymptotic distribution that does not admit such improvement. We

demonstrate in heteroskedastic linear IV models that popular estimators can be

improved under some conditions.

JEL Codes: C13, C14.

Keywords: weak identification, semiparametric efficiency.

1 INTRODUCTION

Weak identification arises in a wide range of empirical settings. A leading example is

the linear instrumental variables (IV) model in which the instruments and endogenous

regressors are barely correlated (Nelson and Startz, 1990; Bound et al., 1995). When

this happens, even with a large sample, classical asymptotic theory is known to yield

poor approximations to the behavior of familiar statistics (Staiger and Stock, 1997),

causing problems in both estimation and inference. We encounter this problem in vari-

ous other contexts: Stock and Wright (2000) analyze weak identification in generalized
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method of moments (GMM) models; Guggenberger and Smith (2005, 2008) and Otsu

(2006) in generalized empirical likelihood (GEL) models; Andrews and Cheng (2012),

Han and McCloskey (2017), and Cox (2017) in extremum estimation models; Iskrev

(2008), Ruge-Murcia (2007), and Canova and Sala (2009) in dynamic stochastic gen-

eral equilibrium (DSGE) models; Armstrong (2016) in differentiated products demand

estimation models. Many estimators of weakly identified parameters exhibit inconsis-

tency and bias, and, as a consequence, standard inference procedures such as t- and

Wald tests may have substantially distorted sizes (Phillips, 1984, 1989; Dufour, 1997;

Hirano and Porter, 2015, as well as aforementioned papers). Following these practically

challenging problems, a vast amount of theoretical work has been published.

The theoretical literature on weak identification is confined to specific estimation

and inference procedures in specific models. Many papers consider particular asymp-

totic embeddings, find statistics that are well-behaved, and derive robust statistical

procedures in various models, especially in the linear IV model. In contrast, many

fundamental questions—such as what is the common cause of known instances of weak

identification, what is a general guideline to look for well-behaved statistics, and what is

the semiparametric efficiency in the presence of weak identification—have been largely

left unanswered. Such exploration is essential, however, not only to facilitate unified

understanding of the phenomenon but to measure performance of different procedures

and develop general systematic construction methods for estimation and inference.

This is more important than it has ever been, especially now that numerous inference

procedures have been developed in many empirically relevant settings.

This paper studies weak identification from the perspective of semiparametric the-

ory. We explore how weak identification emerges in the classical framework of Bickel

et al. (1993), Van der Vaart (1998, Chapter 25), and Kosorok (2008, Part III). We find

that weak identification occurs as a result of the parameter’s asymptotic dependence

on the score; we call such a parameter weakly regular. This is in stark contrast to the

classical regular parameters, whose derivatives (local parameters) depend on the score,

not the parameters themselves. As an immediate consequence of this observation, we

derive—without reference to a specific estimation or inference procedure—that there

exists neither a consistent estimator, a consistent test, nor an equivariant (hence piv-

otal) estimator when the parameter is weakly regular. The dependence on the score is

homogeneous of degree zero and essentially nonlinear, and this nonlinearity is the root

cause of many non-Gaussian nonpivotal asymptotic distributions witnessed through-
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out the literature (Staiger and Stock, 1997; Stock and Wright, 2000; Guggenberger

and Smith, 2005; Andrews and Cheng, 2012; Cox, 2017). To circumvent the problem

of almost arbitrary nonlinearity, we seek ways to explore weak regularity from the

standpoint of regular parameters.

We show that behind every weakly regular parameter there exists an underlying pa-

rameter that is regular and controls the limit behavior of the weakly regular parameter.

In other words, a weakly regular parameter can be represented as a nonlinear transfor-

mation of the local parameter of some regular parameter. Finding such a parameter

allows us to reformulate the model so it consists only of regular parameters and thus

provides a tractable foundation on which to discuss estimation and inference easily.

This consorts with the repeated observation in the literature that reduction to regular

parameters (usually referred to as “reduced-form parameters”) can substantially sim-

plify the problems (Staiger and Stock, 1997; Stock and Wright, 2000; Chernozhukov

et al., 2009; Magnusson and Mavroeidis, 2010; Magnusson, 2010; Guerron-Quintana

et al., 2013; Andrews and Mikusheva, 2016a,b; Andrews, 2016; Cox, 2017, among many

others); we generalize this observation to arbitrary semiparametric models and show

that there exists an underlying regular parameter for every weakly regular parameter.

However, underlying regular parameters are not unique, and statistical analyses based

on different underlying parameters may yield different performances. This gives rise to

the need for criteria to choose which underlying parameter to use.

We consider desirable properties of underlying parameters from two perspectives.

Intuitively, a good underlying regular parameter would exhaustively contain all infor-

mation about the weakly regular parameter that can be inferred by the model, and it

would contain no irrelevant information that may lead to noisy analyses; this intuition

parallels that of efficient influence functions of classical nuisance parameter theory. In

light of this, we define an underlying parameter to be sufficient if knowing the value of

its local parameter reveals as much information as knowing the weakly regular param-

eter. The key is to understand that information about the weakly regular parameter

comes from two sources: the value of the weakly regular parameter and the very fact

that it is identified. A sufficient underlying parameter would contain both pieces of in-

formation. Next, we define an underlying parameter to be minimal if knowing its local

parameter does not reveal more information than knowing the weakly regular param-

eter. If it does, its estimation would create additional noise in an effort to estimate its

unnecessary “nuisance” component. In short, the best underlying regular parameter
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would be minimal and sufficient. We show existence of minimal sufficient underlying

parameters, provide a way to assess their sufficiency and minimality in general setups,

and present examples of minimal sufficient underlying parameters.

With these concepts, we define a new notion of efficiency for estimating weakly

regular parameters. Efficiency of estimation under weak identification has received

little treatment in the literature. This is because non-Gaussianity and nonpivotality

of the asymptotic distributions render the classical efficiency concepts, the convolution

and minimax theorems, inapplicable, at least in their direct forms. Our formulation

enables us to decompose estimation of weakly regular parameters into estimation of the

minimal sufficient underlying regular parameters and their transformation. As the un-

derlying regular parameters admit the classical convolution theorem, efficiency of their

estimation can be discussed through the classical theory. Moreover, if the estimators of

the underlying parameters contain unnecessary noise, then their transformations would

also contain unnecessary noise. Such noise can then be eliminated by taking expec-

tation with respect to it since the noise and the asymptotic distributions of efficient

estimators are asymptotically independent. Conceptually, this corresponds to applying

the Rao-Blackwell theorem to the local asymptotic representations of the estimators,

exploiting the fact that the efficient asymptotic distributions of regular parameters are

“sufficient” in the local expansion. The resulting conditional expectation estimators

are, as a consequence, more concentrated toward the same means without affecting the

size of the biases. We formalize this idea as a theorem and name it local asymptotic

Rao-Blackwellization (LAR). If such improvement is impossible, we call the estimators

weakly efficient. We put the qualifier “weakly” as weakly efficient estimators are not

unique. We also discuss relationship between weak efficiency and classical efficiency.

Most estimators in the literature can be written as functions of estimators of some

underlying regular parameters and thus fall within the class of estimators covered

by our results. We apply our results to heteroskedastic linear IV models and present

examples of weakly efficient estimators. Conventional estimators such as two-stage least

squares (2SLS), GMM, and Fuller as well as the unbiased estimator of Andrews and

Armstrong (2017) are shown to be inefficient in the presence of heteroskedasticity and,

under the availability of an efficient estimator of the reduced-form coefficients, admit

transformations into weakly efficient estimators by LAR. We carry out simulation to

investigate how weakly efficient estimators outperform their original estimators.

There is a large body of literature that studies the optimality of statistical pro-
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cedures under weak identification. Müller and Wang (2017) study estimation under

weak identification that minimizes the weighted average risk when the asymptotic dis-

tribution of the statistics is known. Armstrong (2016) analyzes identification strength

in demand estimation and prescribes diagnostics. Moreira (2003) and Andrews et al.

(2006, 2007) develop optimal conditional likelihood ratio (CLR) tests in linear IV mod-

els with normal homoskedastic errors. Müller (2011) studies efficient inference under a

weak convergence assumption. Cattaneo et al. (2012) consider estimation and discuss

nearly optimal tests in weakly identified linear IV models with independent but pos-

sibly non-Gaussian errors. Elliott et al. (2015) develop the power envelope in models

with nuisance parameters and apply it to weakly identified linear IV models. There

are also numerous studies about inference procedures that are robust to weak identifi-

cation and identification failure in many settings, including Zivot et al. (1998, 2006),

Wang and Zivot (1998), Kleibergen (2002, 2004, 2005, 2007), Dufour (2003), Dufour

and Taamouti (2005), Mikusheva (2010), Chaudhuri and Zivot (2011), Guggenberger

et al. (2012), Andrews and Cheng (2013, 2014), Andrews and Mikusheva (2014, 2015,

2016a,b), Qu (2014), and Cheng (2015). Also, some degree of efficient estimation un-

der semi-strong identification is investigated (Antoine and Renault, 2009, 2012; Antoine

and Lavergne, 2014).

The rest of the paper is organized as follows. Section 2 provides examples of weak

identification in economics. Section 3 defines weak identification in semiparametric

models, gives impossibility results, and introduces the notion of underlying regular pa-

rameters. Section 4 introduces sufficiency and minimality of underlying regular param-

eters. Section 5 derives LAR for the estimation of weakly regular parameters, whence

we define weak efficiency. Section 6 discusses application of LAR to heteroskedastic

linear IV models and provides simulation results. Section 7 concludes. The Appendix

contains proofs. The Online Supplementary Appendix contains supplementary results.

2 WEAK IDENTIFICATION IN ECONOMICS

We encounter the problem of weak identification in various places in economics, from

micro- to macroeconomic contexts. This section describes prominent examples of weak

identification. Among them, the linear IV model (Example 1) is the most important

one; it branches into special cases that capture various aspects of weak identification.
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Example 1 (Linear IV). Consider the IV regression model:{
yi = x′iβ + εi, E[εi | zi] = 0,

x′i = z′iπ + v′i, E[vi | zi] = 0,

where yi and εi are scalars, xi, β, and vi are d × 1 vectors, zi is a k × 1 vector, π is

a k × d full column rank matrix, and k ≥ d. The first equation is called the second-

stage equation and the second the first-stage equation; they are collectively called the

structural equations. On the other hand, the reduced-form equations are obtained by

substituting the first-stage equation into the second-stage:{
yi = z′iπβ + ui, E[ui | zi] = 0,

x′i = z′iπ + v′i, E[vi | zi] = 0.

The first equation of the reduced-form equations may sometimes be referred to as the

second-stage equation when there is no confusion. The model is said to be just-identified

if k = d and overidentified if k > d. We are interested in the parameter β, which is

called the structural parameter.

The conditional moment restrictions E[ui | zi] = 0 and E[vi | zi] = 0 are the key

identifying assumptions; they are sometimes replaced by the weaker versions of the

unconditional moment restrictions E[ziui] = 0 and E[ziv
′
i] = 0. The theory developed

in this paper subsumes both cases while the demonstration of our theory in later

sections will be based on the conditional moment restrictions. The second moments of

all variables are assumed to be finite. The model is called homoskedastic if E[u2
i | zi],

E[uivi | zi], and E[viv
′
i | zi] do not depend on zi; otherwise, it is heteroskedastic.1

Weak identification of the structural parameter β occurs when the correlation be-

tween the endogenous regressors xi and the instruments zi is weak, which is captured

by conventional asymptotic embedding (Staiger and Stock, 1997): πn = O(1/
√
n).

Another possibility of weak identification is the case in which πn does not vanish but

approaches a rank deficient matrix at root-n: πn = π0 +O(1/
√
n), where π0 is nonzero

but not of full column rank (Andrews and Guggenberger, 2017, call this joint weak

identification). Through suitable reparametrization and normalization, this model re-

duces to one where π0 is a diagonal matrix whose upper `×` submatrix equals identity

for some ` < d and all other elements zero (Section S.2). In the main text, we further

1With unconditional moment restrictions, homoskedasticity means the following weaker version:
E[u2i ziz

′
i], E[uivi⊗ ziz′i], and E[viv

′
i⊗ ziz′i] are proportional to E[ziz

′
i] (up to the Kronecker structure).
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assume that π0 is a zero matrix as in Staiger and Stock (1997). Let

πn =
π̇√
n

+ o

(
1√
n

)
for a k × d matrix π̇ that is of full rank.2 This embedding induces the asymptotics to

the second-stage coefficients, πnβn = π̇β/
√
n + o(1/

√
n) for a d × 1 vector β. When

the model is weakly identified, the 2SLS estimator β̂ is no longer consistent for β.

Staiger and Stock (1997) show that the 2SLS converges in distribution to a Cauchy-

like distribution that depends on the local parameter. It is important to understand

that β̂ itself is OP (1), not the inflated version
√
n(β̂ − β).

Example 2 (Nonlinear GMM). Many structural models in economics identify pa-

rameters of interest in the form of a nonlinear moment equation. In particular, the

parameter of interest β ∈ Rd is identified as a unique solution to

E[Mi(β)] = m(β) = 0

for some random process Mi (e.g., Zih(Xi; β) for some Xi and Zi), indexed by β.

Weak identification of β happens when the moment function m converges uniformly to

a function that has multiple zeros at rate
√
n. Under weak identification, the nonlinear

GMM estimator β̂ is not consistent and converges in distribution to a nonstandard

nonpivotal distribution (Stock and Wright, 2000).

Example 3 (Extremum estimation). Another popular specification that arises from

structural models is the extremum estimation model. The parameter of interest β ∈ Rd

is identified as the minimizer of an unknown function of which we have an observable

random estimator; the minimizer of the random function yields the estimator of β. This

model is closely related to Example 2 and some models (including linear IV models)

admit both representations as GMM models and extremum estimation models. Weak

identification of β occurs when the objective function flattens out (partially or fully) as

the sample size tends to infinity. Andrews and Cheng (2012) consider cases when one of

the parameters parameterizes the identification strength of other parameters; Han and

McCloskey (2017) offer a way to reparameterize some extremum estimation models

into the framework of Andrews and Cheng (2012) when the source of identification

failure is known; and Cox (2017) considers models that are doubly parameterized by

2In fact, it is not even necessary that πn approach zero no faster than root-n, in which case it will
induce asymptotic partial identification; see Section S.3 for further discussion.
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structural and reduced-form parameters where the reduced-form parameters are always

identified.

Example 4 (Differentiated product demand estimation). Endogeneity resulting from

the simultaneous determination of prices and quantities poses a problem in demand es-

timation in industrial organization. In a situation in which one observes characteristics

of many markets (but not individual purchasing behaviors), this endogeneity is often

solved by using characteristics of other products as instruments for the endogenous

prices (Berry et al., 1995). To invoke asymptotic approximation, the limit is often

considered in the number of products tending to infinity, the so-called “large market

asymptotics.”

Armstrong (2016) shows, however, that the strength of these instruments is sensitive

to how many products there are; in particular, when the number of products diverges

along with the number of markets, the demand parameters may exhibit behaviors of

strong identification, weak identification, or identification failure, depending on the

relative rate of growth of the numbers of products and markets. A distinct feature of

this example is that weak or non-identification asymptotics arises as a consequence of an

equilibrium outcome, rather than as a purely statistical consideration of approximation.

Example 5 (Limited information macroeconomic models). Modern DSGE models

contain three key equations: a Phillips curve, an Euler equation, and a monetary

policy rule. When we estimate parameters of a DSGE model, we often take one of the

equations individually and estimate via GMM with a particular choice of instruments.

As this makes use of only a part of the full structure of the DSGE model, it is called

the limited information approach and allows one to conduct estimation with a minimal

set of assumptions about the nature of macroeconomic dynamics.

Increasing attention is given to the fact that these instruments have the tendency to

be weak. To name a few examples, Dufour et al. (2006) and Nason and Smith (2008)

analyze the case of potential weak identification in the context of New Keynesian

Phillips curve estimation; Yogo (2004) in the context of Euler equation estimation;

and Mavroeidis (2010) in the context of monetary policy estimation.

Weak identification is thus widely observed in economics. There are also other

instances of “weak identification” that actually entail partial identification in the limit.

Our main focus in this paper is on “pure” weak identification; see Section S.3 for more

discussions on this phenomenon.
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3 WEAK IDENTIFICATION IN SEMIPARAMETRIC MODELS

Suppose we observe i.i.d. random variables X1, . . . , Xn from the sample space (X ,A ).

The set of possible distributions of each X is denoted by P and is called the model.

To obtain fruitful asymptotics around a distribution P ∈ P , we consider a path3 of

distributions Qt ∈ P indexed by a real number t ∈ (0, 1] that is differentiable in

quadratic mean (DQM) at P , that is, there exists a measurable function g : X → R
such that4 ∫

X

[
dQ

1/2
t − dP 1/2

t
− 1

2
gdP 1/2

]2

−→ 0 as t→ 0.

This convergence is denoted by Qt→DQM P , and we call g the (model) score induced by

the path {Qt}.5 The idea behind asymptotic approximation theory is that the path of

“alternatives” {Qt} that approaches P at the same rate as the path of “samples” {P̂n}
is not deterministically discriminable in the limit and hence yields an approximation

that reflects finite sample uncertainty; therefore, in many examples, it is suggestive to

understand t = 1/
√
n and in a minor abuse of notation to denote Q1/

√
n by Qn.

We often do not consider every possible path in P ;6 let PP denote the set of paths

we consider that tend to P in DQM. Since there is little chance of misunderstanding,

we hereafter denote {Qt} simply by Qt, for example, Qt ∈PP ; therefore, Qt can refer

to the entire path {Qt} or an element Qt of the path for a specific t, depending on the

context. The set ṖP of scores g induced by the paths in PP is called the tangent set

at P . It is clear from the definition of scores that ṖP is a subset of L2(P ).7 Depending

on the structure of PP , the tangent set might be a linear space, a cone,8 or just a

set without much structure; we assume that we can always augment PP linearly so

that the induced tangent set will be linear. For this reason, we call the tangent set

the tangent space. The tangent space can be considered the local approximation of the

model by a linear vector space. Finally, a parameter ψ : P → D is defined as a map

from the model P to a Banach space D.

If the parameter ψ : P → D is differentiable in a suitable sense, by the chain rule

we may approximate the change in the parameter along any path by a linear map from

3A path is also called a (parametric) submodel.
4The integral is understood with respect to some σ-finite measure dominating P and Qt, and dP

and dQt are the Radon-Nikodym derivatives of P and Qt with respect to it.
5Throughout the paper, dependence of g on {Qt} will be implied by the context.
6See, e.g., Bickel and Ritov (2000).
7In this sense, Ṗ is the set of equivalence classes of scores, to be precise.
8A subset X of a linear space is called a cone if x ∈ X implies ax ∈ X for every a > 0.
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the tangent space ṖP to the parameter space D. Any infinitesimal perturbation of

distribution P then leads to a linear perturbation of parameter ψ. Such a parameter

is known to behave well and is said to be regular. This case is well studied in the liter-

ature (Groeneboom and Wellner, 1992; Bickel et al., 1993; Van der Vaart, 1988, 1998;

Kosorok, 2008), and we will make good use of it in the study of weak identification.

The appropriate notion of differentiability is given as follows.

Definition (Regular parameter). A parameter ψ : P → D is regular (or differentiable)

at P relative to PP if there exists a continuous linear map ψ̇P : ṖP → D such that9

ψ(Qt)− ψ(P )

t
−→ ψ̇Pg for every Qt ∈PP .

The derivative map ψ̇P is called the local parameter of ψ. The adjoint map ψ̇∗P : D∗ →
ṖP is called the efficient influence map of ψ, where D∗ is the dual space of D and ṖP
the completion of ṖP .10

Remark. In the classical context, the tangent set “represents” the set of paths (Kosorok,

2008, Section 18.1), so regularity (differentiability) is often defined “relative to the

tangent set” (Van der Vaart, 1998, Chapter 25; Kosorok, 2008, Section 18.1). In

the context of weak identification, however, the corresponding tangent set does not

represent the set of paths (see the next section); therefore, we keep the original wording

“relative to the set of paths” from Van der Vaart (1991b). The word “regular” is taken

from Van der Vaart and Wellner (1996, Chapter 3.11).

3.1 Weakly Regular Parameters

Now we define a weakly identified parameter. When we talk about weak identification,

often have we in mind a situation in which the sequence of distributions converges to

a point of identification failure. In this respect, the weakly identified parameter may

only be defined on a subset Pβ of P where the difference P \ Pβ represents all points

of identification failure. Accordingly, the path cannot fall outside of the submodel Pβ,

and the tangent set must be restricted in order for the weakly identified parameter to

9If PP is the set of all possible paths in P, then regularity of ψ is equivalent to Hadamard
differentiability of ψ.

10The function ψ̃P : X → D such that ψ̇∗P δ
∗ = δ∗ψ̃P for every δ∗ ∈ D∗ is called the efficient influence

function of ψ (Bickel et al., 1993, Section 5.2). The qualifier efficient is justified in the context of the
convolution theorem as remarked in Section 5. Kosorok (2008, Section 18.1) also gives alternative
definitions (interpretations) of efficient influence functions in the context of functional parameters.
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be well defined. Computing the corresponding tangent subset requires care, however,

since too rapid an approach to the point of identification failure must be avoided.

Somewhat counterintuitively, the tangent set pertinent to Pβ cannot be defined as the

set of all scores induced by the paths taking values in Pβ; it is the set of all scores that

are not induced by the paths not taking values in Pβ.

Definition (Pertinent tangent cone). The tangent set ṖP,β ⊂ ṖP pertinent to the

submodel Pβ at P ∈ P , possibly P ∈ P \ Pβ, is the set of scores g ∈ ṖP such that

there does not exist a path in PP that takes values in P \ Pβ and induces g. Define

PP,β to be the set of paths in PP that take values in Pβ and induce scores in ṖP,β.

The following example illustrates why we need this circuitous definition.

Example 1 (Linear IV, continued). Consider a simple parametric linear IV model

with d = k = 1 and (u, v) ∼ N(0, I2). So P is the set of distributions of (x, y, z)

such that (y − zπβ, x − zπ) ∼ N(0, I2) for some π, β ∈ R and Pβ is the subset of

P such that π 6= 0. Consider the asymptotic embedding πn = π̇/n. The path of

this embedding is dQn = 1
2π

exp
(
− (y−zπ̇β/n)2+(x−zπ̇/n)2

2

)
, which converges in DQM to

the point of identification failure dP = 1
2π

exp
(
−y2+x2

2

)
with the score

√
ndQn−dP

dP
→ 0.

Although Qn takes values only on Pβ, its score can also be induced by the path Q̃n ≡ P ,

which should be excluded. Therefore, ṖP,β cannot be taken as the set of all scores

induced by paths in Pβ, but as the set of scores not induced by paths not in Pβ.

From the observation that P is not in Pβ, we see that ṖP,β is only a cone.

Lemma 1. ṖP,β and ṖP \ ṖP,β are cones.

Remark. In classical asymptotic theory, the limit distribution P is often regarded as

the “null hypothesis” and the path Qt as a drifting sequence of “alternatives.” When

it comes to weak identification, in contrast, both the null and alternatives reside as

paths in PP,β; P is merely a point of reference of identification failure.

If the set of paths PP is much richer than PP,β in a way that Span ṖP,β is a strict

subset of ṖP , then there exists a superfluously rich side of the model on which β is not

even defined. Since it is meaningless to consider such parts of the model when one’s

focus is on the parameter β, we assume innocuously that Span ṖP,β = ṖP .11

11Later on we define the underlying regular parameter on the whole of P, so it is actually harmful
to require that that parameter be regular on the unconsidered realm of the model.
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Now we define the weakly identified parameter under the name weakly regular pa-

rameter.12 We henceforth shun the use of the qualifier “weakly identified” since weak

identification in the literature may not always exclude cases of in fact no identification

(e.g., Moreira, 2009; Andrews and Cheng, 2013, 2014; Han and McCloskey, 2017). In

this paper, we assume that weakly regular parameters are identified at every fixed

n in that there exists a unique value of the parameter for any given distribution Qn

belonging to Pβ. Moreover, we assume that the parameters remain identified in the

limit in the sense that there exists a unique value of the parameter for each score g in

ṖP,β. See Section S.3 for cases that entail partial identification in the limit. Let B be

another Banach space on which a weakly regular parameter will be defined.

Definition (Weakly regular parameter). A parameter β : Pβ → B is weakly regular

at P ∈ P , possibly P ∈ P \ Pβ, relative to PP,β if there exists a continuous map

βP : ṖP,β → B that is homogeneous of degree zero such that

β(Qt) −→ βP (g) for every Qt ∈PP,β.

The idea behind the definition is that a weakly identified parameter is necessarily

accompanied by the fundamental uncertainty of the model summarized by the score.

This captures our observation that the estimator of a weakly identified parameter does

not converge to the true value but retains some randomness in the limit. In this sense,

asymptotics of weakly regular parameters is “global” in nature, and nonlinearity often

observed in the literature (e.g., Cox, 2017) arises compellingly from nonlinearity of

the map βP , resulting in a nonstandard limit distribution. The definition clarifies the

extent of such randomness and nonlinearity that are inherent to the model (and hence

may not be compensated for by the choice of estimation methods); see Theorem 2 for

the consequential, fundamental impossibility results.

Remark. Since we regard the reference point of identification failure P and the sets

of paths PP and PP,β as fixed, we often mention (weak) regularity of a parameter

without referring to the point of evaluation and the relative collection of paths.

Remark. Being a continuous map, a regular parameter is trivially weakly regular; that

is, if ψ : P → D is regular, then ψ(Qt) → ψP (g) where ψP (g) ≡ ψ(P ). Also, if β is a

nontrivial weakly regular parameter, i.e., βP is nonconstant, then βP cannot be linear

since a linear function that is homogeneous of degree zero must be identically zero.
12Not to be confused with weak regularity of an estimator defined in Van der Vaart (1988, Section

2.2) or Bickel et al. (1993, Definition 5.2.6).
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Remark. A weakly regular parameter is not only nondifferentiable at P ; it is even

discontinuous at P (unless βP is trivially constant). This is in contrast to the literature

on continuous but not (fully) differentiable parameters (Hirano and Porter, 2012; Fang,

2015, 2016; Fang and Santos, 2015; Hong and Li, 2017). This discontinuity plays a key

role in one of the impossibility results in Theorem 2; we exploit the “continuity” of

asymptotic distributions implied by Le Cam’s third lemma.

Remark. Homogeneity of βP is a natural consequence of dependence on g. Since β(Qkt)

for fixed k > 0 converges to the same limit as β(Qt), we have βP (kg) = βP (g).13

Continuity of βP is required only on its domain ṖP,β; it is not possible to extend βP

continuously to the whole of ṖP unless βP is trivially constant.

Now we look at examples. We construct paths that encapsulate the asymptotic

embeddings discussed in Section 2 and show that the parameters can be written as

continuous and homogeneous functions of the model scores.

Example 1 (Linear IV, continued). Let Puvz be the set of probability distributions

Puvz on (u, v′, z) with second moments such that E[u | z] = 0, E[v | z] = 0, E[zz′] is

invertible, and dPuvz differentiable almost everywhere in (u, v′).14 The model P is the

set of probability distributions P on the observable elements (x, y, z) such that

dP (x, y, z) = dPuvz(y − z′πβ, x′ − z′π, z) for some Puvz ∈ Puvz, π ∈ Rk×d, β ∈ Rd.

The distribution of z is characterized by Puvz; that of y by Puvz and πβ; that of x

by Puvz and π; thus, we have “parameterized” the semiparametric model P by three

parameters Puvz, π, and β. The submodel Pβ is the subset of P of all distributions

with det(π′π) 6= 0. Let π(P ) = 0 at P ∈ P \ Pβ. We consider a path Qt toward P

such that [π(Qt) − 0]/t converges to some element π̇ in Rk×d. If det(π̇′π̇) = 0, then

there exists a path taking values in P \ Pβ that yields the same limit of π; this means

that for every Qt ∈ PP,β we have det(π̇′π̇) 6= 0. Such a path can be represented as

dQt(x, y, z) = dQt,uvz(y − z′(tπ̇tβt), x
′ − z′(tπ̇t), z) for some path Qt,uvz in Puvz, and

π̇t → π̇ and βt → β. Being a probability distribution by itself, Qt,uvz has its own

“model score” guvz. To see what it is like, note that the only essential restriction of

13Fang and Santos (2015) observe a related fact that a directional derivative must be homogeneous
of degree one.

14Differentiability is not necessary as long as each one-dimensional parametric submodel is differen-
tiable in quadratic mean (see, e.g., Pollard, 1997; Van der Vaart, 1998, Section 7.2). Here we assume
this for illustration of derivation of scores. See also Van der Vaart (1988, Section 1.2 and Appendix
A.2).
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Qt,uvz is
∫
zudQt,uvz = 0 and

∫
zv′dQt,uvz = 0. Therefore,

0 =
1

t

(∫
zudQt,uvz −

∫
zudPuvz

)
−→

∫
zuguvzdPuvz = EP [zuguvz].

Similarly, one sees that EP [zv′guvz] = 0. Therefore, the set of scores of the parameter

Puvz consists of all appropriate scores that satisfy these two restrictions.15 Using this,

the model score for the path of interest Qt can be calculated as

dQt − dP
tdP

=
dQt,uvz(y − z′(tπ̇tβt), x′ − z′(tπ̇t))− dPuvz(y − z′(tπ̇tβt), x′ − z′(tπ̇t))

tdP

+
dPuvz(y − z′(tπ̇tβt), x′ − z′(tπ̇t))− dPuvz(y, x)

tdP

−→ g = guvz − z′π̇β
dPuvz,u
dP

− z′π̇ dPuvz,v
dP

, (1)

where Puvz,u and Puvz,v represent the partial derivatives of Puvz with respect to u and v.

Observe that by integration by parts EP [zug] = −
∫
zuz′π̇βdPuvz,u −

∫
zuz′π̇dPuvz,v =∫

zz′π̇βdP = EP [zz′]π̇β. Similarly, EP [zv′g] = EP [zz′]π̇. Therefore, βt converges to

β = (EP [zz′]−1EP [zv′g])→(EP [zz′]−1EP [zug]) =: βP (g),

where A→ denotes the left inverse of A. This map is continuous on ṖP,β and homoge-

neous of degree zero but nonlinear.

Thus, we have shown that β defined on Pβ converges to a continuous and homo-

geneous function βP of a score along every path in PP,β, meaning that β is weakly

regular at P relative to PP,β.

Example 2 (Nonlinear GMM, continued). Let D be the space of bounded continuous

functions from Rd to R. Let Pm be the set of distributions Pm of zero-mean stochastic

processes taking values in D. The model P can be represented as the set of distributions

P on Mi such that dP (Mi) = dPm(Mi −m) for some m ∈ D. The submodel Pβ is the

subset of P whose elements have a mean function in the subset Dβ of D of functions m

that have unique zeros. Recall that we are interested in paths along which the moment

functions vanish at rate
√
n, that is, mn(·) = 0(·) + ṁ(·)√

n
. Letting t = 1/

√
n, write

mt(·)− 0(·)
t

−→ ṁ(·) ∈ Dβ.

15See Van der Vaart (1998, Example 25.28) for related discussion.
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In short, we are interested in the paths Qt →DQM P that yield the moment function

(as a parameter m : P → D) to be regular. Thus, for some path Qt,m to Pm in Pm, we

can write the path Qt to P in Pβ as

dQt(Mi) = dQt,m(Mi −mt) where
mt − 0

t
−→ ṁ ∈ Dβ.

Meanwhile, since EQt [Mi] = mt and EP [Mi] = 0, we have

mt − 0

t
=

∫
Mi

dQt − dP
t

−→
∫
MigdP = EP [Mig] = ṁ.

Therefore, EP [Mig](θ) = 0, that is, θ = θP (g) is defined as the zero of EP [Mig]. This

is a nonlinear and continuous map on ṖP,β that is homogeneous of degree zero. Again,

we conclude that θ is weakly regular at P .

Example 6 (Testing local hypotheses). For a regular parameter ψ : P → D, consider

the hypothesis: H0 : ψ(P ) ∈ D0 vsH1 : ψ(P ) ∈ D1, where D0∩D1 = ∅ and D0∪D1 ⊂ D.

This induces a local testing problem at a boundary P of the following form: H0 : ψ̇Pg ∈
DP,0 vs H1 : ψ̇Pg ∈ DP,1 with DP,0 ∩ DP,1 = ∅ and DP,0 ∪ DP,1 ⊂ D. These testing

problems can be represented by a weakly regular parameter β : Pβ → [0, 1] such

that β(P ) := 1{ψ(P ) ∈ D0}, where Pβ := ψ−1(D0 ∪ D1), and its corresponding limit

βP (g) := 1{ψ̇Pg ∈ DP,0}. If DP,0 and DP,1 are cones and their boundary is excluded, β

can be considered weakly regular.

3.2 Fundamental Impossibility

The utility of our theoretical formalism can be readily harvested in the following the-

orem. It gives a formal proof to the conventional wisdom that a “weakly identified”

parameter cannot be estimated consistently or pivotally—but not as a characteristic

of a specific estimation method—as a direct consequence of the characteristic of the

model (see, inter alia, Phillips, 1984, 1989; Staiger and Stock, 1997; Stock and Wright,

2000; Guggenberger and Smith, 2005; Andrews and Cheng, 2012; Cox, 2017).16 This

result can also be viewed as a generalized proof of nonexistence of a consistent test con-

jectured by Hahn et al. (2011).17 Distinct but related are the impossibility results by

16Consistent estimation may be possible in linear IV models if the number of weak instruments tends
to infinity and some other conditions are met (Chao and Swanson, 2005; Newey and Windmeijer, 2009).
In this case, the structural parameter is not weakly regular.

17Their setup can be translated into ours by taking B to be the product space for two estimators
compared in the Hausman test, observing that a regular parameter is trivially weakly regular.
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Dufour (1997) and Hirano and Porter (2015); their setup is a generalization of the weak

linear IV structure whereas our setup is a generalization of the weak identification phe-

nomena. Indeed, Dufour (1997) shows nonexistence of bounded confidence sets (which

is “stronger” than nonexistence of consistent estimators) while there exist weakly reg-

ular parameters that admit bounded confidence sets (Example 6); Hirano and Porter

(2015) show the impossibility of unbiased estimation while there exist weakly regular

parameters that admit unbiased estimation (Andrews and Armstrong, 2017).

Theorem 2 (Impossibility of consistent and equivariant estimation). There is no con-

sistent sequence of estimators of a nontrivial weakly regular parameter; there is no

consistent sequence of nontrivial tests of a nontrivial weakly regular parameter; there is

no equivariant-in-law sequence of estimators of a nontrivial weakly regular parameter

with a separable limit law.

Remark. The assumption of separability of the limit law is without “great loss of

generality;” we treat it as general impossibility of equivariant estimation in the main

text. See discussions of Van der Vaart and Wellner (1996, Theorem 1.3.10).

Impossibility of equivariant estimation implies that the asymptotic distribution of

any estimator of a weakly regular parameter, when centered at the true value, is non-

pivotal and not consistently estimable. However, it does not preclude the possibility

that there exist test statistics whose distributions are pivotal or consistently estimable

(Kleibergen, 2002, 2005). In fact, almost any reasonable inference procedure would

be based on statistics whose asymptotic distributions are known or at least estimable;

hence, the problem of estimation and the problem of inference bear quite distinct as-

pects when it comes to weakly regular parameters.18 This partly explains the specialty

of current literature on inference problems pertaining to weak identification.

3.3 Underlying Regular Parameters

The idea on analyzing the weak regularity of a parameter is that in many cases there

exists another parameter that is regular and whose local parameter controls the limit

behavior of the weakly regular parameter. In the literature, such a parameter is known

18This is in stark contrast to the classical context of regular parameters, in which efficient estimation
and “efficient” inference are closely related to each other. Van der Vaart (1998, Chapter 25) states
that “[s]emiparametric theory has little more to offer than the comforting conclusion that tests based
on efficient estimators are efficient.”
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as the “reduced-form parameter” and is considerably utilized in various robust in-

ference procedures under weak identification (inter alia, Magnusson and Mavroeidis,

2010; Mavroeidis, 2010; Guerron-Quintana et al., 2013; Andrews and Mikusheva, 2016a;

Armstrong, 2016; Cox, 2017).19 Then, the weakly regular parameter acts by itself as

(a transformation of) the local parameter of some “underlying” regular parameter; in

other words, it is sufficient to know the value of (the local parameter of) the underlying

regular parameter in order to infer the value of the weakly regular parameter in the

local expansion around the point of identification failure. We now formalize this idea,

starting with the following definition.

Definition (Underlying regular parameter). Let β : Pβ → B be weakly regular at

P ∈ P relative to PP,β. The parameter ψ : P → D is an underlying (regular) parameter

for β at P relative to PP if it is regular at P relative to PP and there exists a continuous

map βP,ψ : Dβ → B that is homogeneous of degree zero such that

β(Qt) −→ βP,ψ(ψ̇Pg) for every Qt ∈PP,β,

where Dβ is the subset of D on which the local parameter of ψ takes values, that is,

{δ ∈ D : δ = ψ̇Pg for some g ∈ ṖP,β}.

Remark. There exists a map βψ : D → B such that β(Qt) = βψ(ψ(Qt)) + o(1) and

thus βψ admits approximation at ψ(P ) by a homogeneous function βψ; set, e.g.,

βψ(δ) = βP,ψ(δ − ψ(P )). In many applications, moreover, there exists an exact di-

rect representation β(Qt) = βψ(ψ(Qt)) with some function βψ : D→ B that is “locally

homogeneous” at ψ(P ). For instance, we show below in Example 1 that the structural

parameter β in linear IV models has a direct representation by the underlying regular

parameter taken to be the reduced-form coefficients.

Remark. An underlying parameter is regular and hence susceptible to various estima-

tion and inference techniques developed in statistics (Bickel et al., 1993; Van der Vaart,

1998; Kosorok, 2008).

Remark. In the context of extremum estimation, Cox (2017) defines “reduced-form

parameters” as functions of “structural parameters.” We take the opposite route: a

weakly regular parameter approaches a function of (the local parameter of) an under-

lying regular parameter.

19On the other hand, the weakly regular parameter is often referred to as the “structural parameter.”
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This definition requires that knowing the local parameter of the underlying regular

parameter is enough to recover the value of the weakly regular parameter; the reduction

of information from knowing g to knowing ψ̇Pg does not impair the ability to discern β

in the limit. With this definition, several questions arise: Does an underlying parameter

always exist? How do we find an underlying regular parameter? How can we check

whether a particular parameter is an underlying regular parameter? Which underlying

regular parameter is better than another? We answer the first two questions in the

remainder of this section and the rest in the next section.

The first question turns out to be straightforward. If one takes the root likelihood

ratio Q 7→ dQ1/2/dP 1/2 to be a parameter, one can trivially claim that there always

exists an underlying regular parameter for any weakly regular parameter. However,

whether there exists an underlying regular parameter that admits root-n consistent

estimation is a different matter. For this, we need to search for a good underlying

parameter in each model separately.

Lemma 3 (Existence of underlying regular parameter). Let β : Pβ → B be weakly

regular. Then, there exist a Banach space D and an underlying regular parameter

ψ : P → D for β.

Now we look into underlying regular parameters in examples. We see that the

natural parameters that appear in each example above constitute underlying regular

parameters; however, the linear IV case contains other interesting and equally natural

underlying parameters that deserve attention.

Example 1 (Linear IV, continued). Define ψ := (ψ1, vec(ψ2)) := (πβ, vec(π)) to

be the (k + kd) × 1 parameter. This is the so-called “reduced-form coefficients” in

linear IV models. Many papers on weak instruments start from considering reduced-

form coefficients and their estimators. Let us verify that ψ is indeed an underly-

ing regular parameter for β. Recall from Example 1 in the previous section that

π̇β = EP [zz′]−1EP [zug] and π̇ = EP [zz′]−1EP [zv′g], that is, the local parameter of

(πβ, vec(π)) is a continuous linear functional of the score; therefore, ψ is regular

with ψ̇Pg = (ψ̇1, vec(ψ̇2)) = (π̇β, π̇). The submodel Pβ contains all distributions

in P that satisfy det(ψ̇′2ψ̇2) 6= 0 and (Ik − ψ̇2ψ̇
→
2 )ψ̇1 = 0. Since βP (g) = ψ̇→2 ψ̇1,

ψ is an underlying regular parameter for β with βP,ψ(ψ̇1, ψ̇2) = ψ̇→2 ψ̇1 defined on

Dβ = {(ψ̇1, vec(ψ̇2)) ∈ Rk×Rk×d : det(ψ̇′2ψ̇2) 6= 0, (Ik− ψ̇2(ψ̇′2ψ̇2)−1ψ̇′2)ψ̇1 = 0}. In fact,

this underlying parameter admits the direct representation β(Qt) = ψ2(Qt)
→ψ1(Qt).
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There are other choices of an underlying regular parameter. Let πd be the first

d × d submatrix of the k × d matrix π. Then ψ(d) := (πdβ, vec(πd)) is also an un-

derlying regular parameter since βP (g) = ψ̇→(d),2ψ̇(d),1 with an analogous definition of

ψ̇(d). The d× d matrix can in fact be any (nondegenerate) combination of coefficients

on k instruments, as long as one can recover the value of β. This is to say that in

overidentified linear IV models (k > d), there are many natural choices of underlying

regular parameters.

Example 2 (Nonlinear GMM, continued). By the definition of θP , we can guess that

the moment function m : Θ → R is an underlying regular parameter for θ. As seen

earlier, it is regular at 0 relative to the paths of interest since tm(Qt)−0
t

= tmt−0
t
→ ṁ =

EP [Mig], which is a continuous linear functional of the score. Moreover, since θP (g) is

the zero of DP [Mig], it can also be written as the zero of ṁ. Thus, by taking θP,m(ṁ)

to be the zero of ṁ defined on the subset Dβ ⊂ D of functions with unique zeros, one

sees that the moment function is an underlying regular parameter. This underlying

parameter admits the direct representation θ(Qt) = θP,m(m(Qt)).

4 MINIMAL SUFFICIENT UNDERLYING REGULAR PARAMETERS

This section characterizes desirable properties of underlying regular parameters. We

say that an underlying parameter is sufficient if it contains all the information captured

by the weakly regular parameter: its identification and value. We say that an under-

lying parameter is minimal if it does not contain information that is irrelevant to the

weakly regular parameter; in other words, a minimal underlying parameter does not

contain a “nuisance parameter.” Putting these together, once we find an underlying

parameter that is sufficient and minimal, we can “forget” about the weakly regular

parameter and concentrate on the model that consists only of regular parameters.

4.1 Nuisance Tangent Spaces

By definition, a weakly regular parameter satisfies β(Qt)→ βP (g) for every path Qt. To

illuminate the idea in the coming definition, let us assume for the sake of argument that

βP : ṖP,β → B is “invertible” in the sense that the equation βP (g) = b can be written

as g = gη + gβ(b). The first term gη does not affect the value of βP , so it is nuisance;

the second term is the important component of the score that contains information

about βP . Thus, the tangent space consists of two subspaces: one spanned by {gη}
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and the other by {gβ(b) : b ∈ B}. In the nuisance parameter literature, the “efficient

tangent space” that represents the maximal amount of relevant information contained

in the model is derived through the projection of {gβ(b)} onto the orthocomplement of

{gη}.20 Then, we naturally expect that the efficient tangent space for a good underlying

regular parameter should contain and only contain the efficient tangent space for β,

representing the right amount of information in the local expansion.

What makes the analysis nonstandard is the involvement of the nonlinear map βP

in the local expansion. In the classical semiparametric theory, the score and the local

parameters are related linearly to each other, thereby leading to a very nice use of the

theory of linear operators (Bickel et al., 1993). The following definition extends the

key notions from this literature to a nonlinear map defined on a cone of a linear space.

Definition. Let X be a linear space and Y a set. For a map f : A→ Y defined on

a cone A in X , define the range R and kernel N by R(f) := {y ∈ Y : y = f(x) for

some x ∈ A} and N(f) := {x̃ ∈X : x+ x̃ ∈ A and f(x+ x̃) = f(x) for every x ∈ A}.

Remark. If f is linear and A = X , N(f) reduces to the standard definition of a kernel

for linear maps.

Now we define the smallest tangent set for β, using the notion of the kernel instead

of “invertibility.” The key is that any score that does not affect identification or the

value of β only contains information about the path that is irrelevant to β; such a score

can be deemed nuisance. Since the tangent space ṖP is linear, we separate the space

into the space spanned by nuisance scores and the residual space. That residual space

will, by construction, only contain scores that are relevant to either identification or

value of β. This is the minimal tangent set, which we will show shortly is a cone.

Definition (Nuisance tangent space). Let β : Pβ → B be weakly regular. Call the

kernel N(βP ) ⊂ ṖP of βP the nuisance tangent space. Denote by Π−β and Πβ the

projection operators onto N(βP ) and N(βP )⊥ in L2(P ).

The definition of N(βP ) tells that g̃ ∈ N(βP ) means g + g̃ ∈ ṖP,β and βP (g + g̃) =

βP (g) for every g ∈ ṖP,β; the first condition is the preservation of identification and

the second the preservation of the value of β. The flip side of this is that if g̃ /∈ ṖP,β,

then there exists g ∈ ṖP,β such that either g + g̃ /∈ ṖP,β or βP (g + g̃) 6= βP (g) is

true. Therefore, such g̃ can be considered to hold information of either identification

or distinction of β.

20For more intuition on this point, see Van der Vaart (1998, Section 25.4).
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Lemma S.1 verifies that the minimal tangent cone is indeed a cone and the nuisance

tangent space is a linear space. Now we clarify these concepts in linear IV models.

Example 1 (Linear IV, continued). The score formula (1) implies that the score

space spanned by g ∈ ṖP such that EP [zug] = 0 and EP [zv′g] = 0 must be contained

in N(βP ). On the other hand, any other score will change the value of either π̇ or β.

Suppose that for g1 ∈ ṖP,β, adding the score g̃ ∈ ṖP would change the value of π̇ but not

β. So one may write g1 = guvz − z′π̇β dPuvz,udP
− z′π̇ dPuvz,v

dP
and g̃ = g̃uvz − z′π̃β dPuvz,udP

−
z′π̃ dPuvz,v

dP
. Then take g2 to be such that g2 = −z′π̇(2β)dPuvz,u

dP
− z′π̇ dPuvz,v

dP
so that

βP (g2) = 2β. Then adding g̃ to g2 will change the value of β since (π̇+ π̃)→(2π̇+ π̃)β 6=
β; it can even be that (2π̇+ π̃)β falls outside of the column space of π̇+ π̃. Therefore,

such g̃ cannot be in N(βP ). Thus we see that N(βP ) equals the set of scores g such

that EP [zug] = 0 and EP [zv′g] = 0, or, the set of scores induced by Puvz.

Example 7 (Regular parameter). A regular parameter ψ : P → D can be considered

trivially weakly regular. Since ψ is defined on the whole of P , Pβ = P and ṖP,β = ṖP .

Since ψ is differentiable at P , it is continuous at P , that is, ψ(Qt) → ψ(P ) for every

Qt ∈PP,β. Therefore, the limit of ψ(Qt) can be trivially written as a constant function

ψP : ṖP → D such that ψP (g) ≡ ψ(P ) for every g ∈ ṖP . Any change in the score

cannot affect the value of ψP , so N(ψP ) = ṖP and ṖP,ψ = {0}.

4.2 Sufficiency and Minimality of Underlying Regular Parameters

The underlying regular parameters are characterized by the span of their “scores,”

or equivalently, of their efficient influence maps.21 The first property we want in the

underlying regular parameter is that it contain all relevant information about β. Here,

“information” is captured by the ability to discern distinct scores in the limit.

Definition (Sufficiency of underlying regular parameter). Let β : Pβ → B be weakly

regular. An underlying regular parameter ψ : P → D for β is sufficient if N(ψ̇P ) ⊂
N(βP ), or equivalently, N(βP )⊥ ⊂ R(ψ̇∗P ).22

The efficient influence map ψ̇∗P of an underlying parameter ψ summarizes the set

of scores that the local parameter of ψ can distinguish. If ψ is sufficient, then knowing

the local parameter of ψ gives a sufficient amount of information that a score contains

21See Van der Vaart (1991b) and Bickel et al. (1993, Section 5.4) for equivalence.
22Use the property of an adjoint operator: N(ψ̇P )⊥ = R(ψ̇∗P ) (Kosorok, 2008, Equation 17.3).
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about the identification or distinction of β. The equivalent formulation says that the

score that ψ cannot distinguish is never used in identification or distinction of β. The

following example shows that an underlying regular parameter need not be sufficient.

Example 1 (Insufficiency in linear IV, continued). Let d = 1 and k > 1. Consider

the underlying regular parameter ψ(Q) = (π1β, π1) that induces ψ̇Pg = (π̇1β, π̇1).

This parameter only uses the first instrument and abandons information from all other

instruments available in the model. Therefore, N(ψ̇P ) contains elements g that change

the value of π̇2. However, changing the value of π̇2 without adjusting for the values

of π̇1β and π̇1 will make β undefined and push the score outside of ṖP,β, so we have

g /∈ N(βP ). Hence, ψ is not sufficient.

Not surprisingly, a sufficient underlying regular parameter contains information of

all instruments.

Example 1 (Sufficiency in linear IV, continued). The underlying regular parameter

ψ(Q) = (πβ, vec(π)) is sufficient. To see this, note that ψ̇Pg = (π̇β, vec(π̇)) and

take gη ∈ N(ψ̇P ). The values of π̇β and π̇ do not change by adding gη to the score.

Recalling the score formula (1), one sees that g + gη ∈ ṖP,β whenever g ∈ ṖP,β and

βP (g + gη) = βP (g), that is, gη ∈ N(βP ). Therefore, ψ is sufficient.

The next property we want in an underlying regular parameter is that it has only

relevant information for the weakly regular parameter. Otherwise, the underlying

parameter contains some information of a “nuisance parameter” and estimating it may

capture unwanted noise that is irrelevant to estimation of the weakly regular parameter.

Definition (Minimality of underlying regular parameter). Let β : Pβ → B be weakly

regular. An underlying regular parameter ψ : P → D for β is minimal if N(βP ) ⊂
N(ψ̇P ), or equivalently, R(ψ̇∗P ) ⊂ N(βP )⊥.

Minimality of ψ requires the opposite inclusion between N(βP ) and N(ψ̇P ). This

is to say that the score irrelevant to identification or distinction of β is also irrelevant

to distinction of the local parameter of ψ. Equivalently, the range of the efficient

influence map of ψ does not contain a score that is unrelated to β. In this sense, a

minimal underlying parameter is “free” of potential nuisance parameters.

Example 1 (Minimality in linear IV, continued). As seen in Example 1 in the previous

subsection, N(βP ) is the set of scores guvz induced by Puvz. Again, recalling the score
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formula, one sees that adding such scores does not change the values of π̇β and π̇,

which implies N(βP ) ⊂ N(ψ̇P ) for both choices of the underlying regular parameter

we discussed: (πβ, vec(π)) and (π1β, π1).23

Remark. Minimal sufficiency in our definition is of a parameter, while minimal suffi-

ciency in the context of sufficient statistics is of a statistic.

This theorem ensures that a minimal sufficient underlying parameter exists.

Theorem 4 (Existence of minimal sufficient underlying regular parameter). For a

weakly regular parameter β : Pβ → B, there exists a minimal sufficient underlying

regular parameter.

Minimal sufficiency per se is not strong enough to pin down the underlying parame-

ter uniquely. However, underlying parameters that are both minimal and sufficient are

almost equivalent in terms of the information they contain. Theorem S.2 characterizes

minimal sufficient underlying parameters and establishes this “equivalence.”

Let us look at examples of minimal sufficient underlying parameters.

Example 1 (Linear IV, continued). As seen earlier, ψ = (πβ, vec(π)) is a natural

choice of an underlying regular parameter that is minimal and sufficient.

Example 2 (Nonlinear GMM, continued). The moment function m is sufficient and, in

many cases, minimal. In particular, if there exists g ∈ ṖP,β such that ṁPg = EP [Mig]

has a zero at θ, then any g̃ ∈ ṖP for which ṁP g̃ is nonzero at θ is not in N(θP ). This

is obvious since ṁP (g + g̃) does not have a zero at θ by the linearity of expectations.

In short, if for any value θ of Rd there exists g ∈ ṖP,β such that θ is the (unique) zero

of ṁPg, then the entire moment function m is minimal.

Given the minimal sufficient underlying regular parameter, the problem of estima-

tion or inference of a weakly regular parameter can be translated into a problem of

estimation or inference of the local parameter of the minimal sufficient underlying pa-

rameter. Being a local parameter of a regular parameter, it provides workable grounds

for many statistical analyses.

One caveat: Unlike classical theory for regular parameters, we “know” that the local

parameter ψ̇Pg lies in the strict subset Dβ of D. This constraint, next to nonlinearity

of βP,ψ, stands as a major source of complication in estimation and inference.

23Note that ψ = (πβ, vec(π)) is still minimal even in the homoskedastic model. Homoskedasticity
helps simplify efficient estimation, but does not help simplify the semiparametric structure itself.
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5 WEAK EFFICIENCY FOR WEAKLY REGULAR PARAMETERS

This section defines a novel notion of efficiency of estimators of a weakly regular pa-

rameter. The difficulty in formulating a reasonable goodness criterion for estimators of

weakly regular parameters lies in the fact that their asymptotic distribution is nonstan-

dard. The classical convolution theorem requires symmetry of the distribution while

many natural estimators of a weakly regular parameter do not lead to a symmetric

distribution. In our context, the limit of a weakly regular parameter is a nonlinear

transformation of the local parameter of an underlying regular parameter. As the es-

timator of a local parameter often leads to Gaussian distributions, one can anticipate

that the asymptotic distribution of an estimator of a weakly regular parameter is some

nonlinear transformation of a Gaussian distribution. Moreover, a nonlinear transfor-

mation of a Gaussian distribution can, in general, be anything. Our idea of defining

efficiency lies in that the consequence of the convolution theorem—inefficient limit dis-

tribution involves an irrelevant noise—carries over after a nonlinear transformation. In

light of Jensen’s inequality, the involvement of noise must increase convex loss.

Assuming that βP,ψ is smooth enough, the problem of accurately estimating β

translates into a problem of accurately estimating ψ. If the natural estimator of ψ

takes values so that the estimated local parameter falls into Dβ (the range of ψ̇P on

the pertinent tangent cone ṖP,β) with probability one, then there is nothing that needs

to be done (and indeed this is the case in some applications). If not, we need to

accommodate the constraint ψ̇Pg ∈ Dβ in either of the following ways.

1. Estimate ψ with the constraint, so we have ̂̇ψPg ∈ Dβ almost surely.

2. Estimate ψ without the constraint; then deal with values outside of Dβ.

Noting that the first approach can be viewed as estimating ψ without the constraint and

then reconstructing another estimator that satisfies the constraint, the two approaches

are essentially equivalent. In this section, therefore, we employ the latter interpretation.

In order to make use of the convolution theorem, we restrict attention to the es-

timators of β that are transformations of regular estimators of ψ. Throughout this

section, we assume that ψ can be estimated regularly and efficiently at root-n.24 First,

recall the definition of a regular estimator for a regular parameter.

24Not all regular parameters admit root-n consistent estimation, especially infinite-dimensional ones
(Wellner et al., 2006; Giné and Nickl, 2015). We make this assumption here since the focus of this paper
is to demonstrate the power of reduction to regular parameters in the context of weak identification
and many interesting examples in economics indeed admit root-n consistent estimation.
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Definition (Regular estimator for regular parameter). A sequence of estimators ψ̂n

for a regular parameter ψ : P → D is called regular at P ∈ P relative to PP if there

exists a tight Borel random element L in D such that

√
n(ψ̂n − ψ(Qn))

Qn L for every Qn ∈PP .

This sequence is called (semiparametric) efficient at P relative to PP if it attains

the distributional lower bound (denote it by Lψ) of the convolution theorem (Van der

Vaart, 1991a, Theorem 2.1; Kosorok, 2008, Theorem 18.3).

Remark. The convolution theorem states that L = Lψ + Lη where Lψ and Lη are

independent tight Borel random elements in D such that Pr(Lψ ∈ R(ψ̇P )) = 1 and

δ∗Lψ ∼ N
(
0, ‖ψ̇∗P δ∗‖2

L2(P )

)
for every δ∗ ∈ D∗. This is to say, the asymptotic distribution

of any regular estimator of a regular parameter is the sum of a Gaussian variable with

covariance being the “L2 norm” of the efficient influence map and an independent noise.

It is efficient when no noise is involved, that is, when Lη ≡ 0.

Remark. If we center ψ̂n at ψ(P ), convergence becomes
√
n(ψ̂n−ψ(P )) Qn ψ̇Pg+L.

Now we define the class of estimators we consider. We focus on estimators of a

weakly regular parameter that can be represented as transformations of estimators of

a minimal underlying regular parameter. Many estimators in the literature fall within

this class. Asymptotic randomness of such estimators must come from estimators of

the local parameter of the underlying parameter
√
n(ψ̂n − ψ(P )) and possibly some

irrelevant noise. Toward this end, we define functions that admit approximation by a

root-n normalization around the point of identification failure.

Definition (Local continuous approximability). Let Dn be indexed subsets of D. A

sequence of maps Tn : Dn × [0, 1] → B is locally continuously root-n approximable at

δ ∈ D tangentially to D∞ ⊂ D if there exists a measurable map Tδ : D∞ × [0, 1] → B
such that for every u ∈ [0, 1], δ + δn/

√
n ∈ Dn, δ∞ ∈ D∞, if a subsequence δn′ satisfies

δn′ → δ∞, then Tn′
(
δ +

δn′√
n′
, u
)
→Tδ(δ∞, u) as n → ∞. Denote this by Tn →δ Tδ and

call Tδ the approximating function of Tn at δ. We use these definitions even when Tn

and Tδ do not depend on the second argument since they can be considered trivially

dependent on (i.e., constant with respect to) u ∈ [0, 1].

Remark. By construction Tδ is continuous on D∞.
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Definition (Regular estimator for weakly regular parameter). A sequence of estimators

β̂n for a weakly regular parameter β : Pβ → B is called regular at P ∈ P relative to

PP,β if there exist a minimal underlying regular parameter ψ : P → D for β, a

regular sequence of estimators ψ̂n of ψ with
√
n(ψ̂n − ψ(Qn))  Qn L, a sequence of

nonrandom maps Tn : D× [0, 1]→ B that is locally continuously root-n approximable

at ψ(P ) tangentially to the range of ψ̇Pg + L for g ∈ ṖP,β, and an independent noise

U ∼ U [0, 1] such that Tψ(P )(L,U) is Borel measurable and

β̂n = Tn(ψ̂n, U) + oP (1) under every Qn ∈PP,β.

Remark. We may without loss of generality take ψ as sufficient; for otherwise one can

augment ψ and have Tn ignore the augmented part.

The asymptotic distribution of a regular estimator is a transformation of the asymp-

totic distribution of the underlying regular parameter.

Proposition 5. Let β̂n = Tn(ψ̂n, U) + oP (1) be a regular sequence of estimators for a

weakly regular parameter β : Pβ → B and
√
n(ψ̂n − ψ(Qn)) Qn L. Then,

β̂n
Qn Tψ(P )(ψ̇Pg + L,U).

Remark. More generally, a regular estimator β̂n can be viewed as a possibly random

transformation T̂n(ψ̂n, U) of ψ̂n and U , and randomness of T̂n vanishes in an appropriate

sense. In the linear IV example below, we show directly that there exists a nonrandom

transformation Tn such that the difference T̂n(ψ̂n, U)− Tn(ψ̂n, U) is oP (1).

Example 1 (Linear IV, continued). Popular estimators of the linear IV model are

regular. Consider the 2SLS. Observe that the reduced-form coefficients (πβ, π) are

regular and the 2SLS can be written as a function of their estimators π̃n = (Z ′Z)−1Z ′X

and π̃βn = (Z ′Z)−1Z ′Y :

β̃2SLS = (π̃′n(Z ′Z)π̃n)−1π̃′n(Z ′Z)π̃βn = (π̃′nE[zz′]π̃n)−1π̃′nE[zz′]π̃βn + oP (1).

The residual is oP (1) since (Z ′Z)/n converges to E[zz′] in probability under every

path. This shows regularity of the 2SLS with the homogeneous approximating function

T : Rk × Rk×d → Rd, T (πβ, π) = (π′E[zz′]π)−1π′E[zz′]πβ. Recall that a subset of the

instruments is not sufficient (Example 1). However, the 2SLS estimator that uses only

a part of the instruments is also regular. To see this, let the subscript (d) denote the
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selection of d instruments. The partial 2SLS estimator can be seen as a function of an

estimator for the entire reduced-form coefficients as

β̃2SLS,(d) = Tn(π̃n, π̃βn, U) = (π̃′(d)E[z(d)z
′
(d)]π̃(d))

−1π̃′(d)E[z(d)z
′
(d)]π̃β(d) + oP (1),

where π̃(d) and π̃β(d) are an estimator of the entire reduced-form coefficients using only

the (d) subset of instruments, and the remaining parts of π̃ and π̃β can be anything

(as long as (π̃β, π̃) is regular).

Similarly, GMM can be shown to be regular. Denote by W the weighting ma-

trix. The GMM estimator β̃GMM with weighting W solves minb
[Z′(Y−Xb)

n

]′
W
[Z′(Y−Xb)

n

]
.

Write the objective function as

1

n

√
n(π̃βn − π̃nb)′

Z ′Z

n
W
Z ′Z

n

√
n(π̃βn − π̃nb).

The oracle weighting matrix for the efficient GMM is W = E[(y− x′β)2zz′]−1, while it

is estimated in case of the feasible GMM. In particular, the two-step GMM estimates

W by plugging in the 2SLS estimator for β and taking its sample counterpart, i.e.,

Ŵ2SGMM = En[(y − x′β̃2SLS)2zz′]−1. The expectation involved in Ŵ (other than the

2SLS estimator) can be consistently estimated. Moreover, minimization is invariant

to scaling, so if one sees minimization as a function of the 2SLS estimators, it is

homogeneous of degree zero (and continuous). Thus, the two-step GMM is regular.

The Fuller estimator proposed by Fuller (1977) is regular while we suspect that the

heteroskedasticity-robust Fuller (HFUL) estimator proposed by Hausman et al. (2012)

is not. Let P := Z(Z ′Z)−1Z ′. For a constant C, let P̃Fuller := P + (C/n)(I − P ). The

Fuller estimator is given by

β̂Fuller = (X ′P̃FullerX)−1(X ′P̃FullerY )

=
(
CE[xx′] +

√
nπ̃′nE[zz′]

√
nπ̃n

)−1(
CE[xy] +

√
nπ̃′nE[zz′]

√
nπ̃βn

)
+ oP (1).

Thus, under weak identification, the Fuller estimator can be thought of as a “weighted

combination” of OLS (C = ∞) and 2SLS (C = 0). On the other hand, due to its

jackknife form, the HFUL estimator requires calculation of the off-diagonal matrix of

P (Hausman et al., 2012). While this is their source of robustness to heteroskedasticity

(under different asymptotics), this makes it challenging, possibly infeasible, to represent

HFUL only as a function of the OLS estimator.

The unbiased estimator by Andrews and Armstrong (2017) is also regular. For sim-
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plicity, let d = 1 and k = 1 and assume that π > 0 and π̃n and π̃βn are asymptotically

uncorrelated. Then the unbiased estimator of β is

β̂unbiased =

√
nπ̂βn
σ̂πβ,n

1− Φ(
√
nπ̂n/σ̂π,n)

σ̂π,nφ(
√
nπ̂n/σ̂π,n)

=

√
nπ̂βn
σπβ

1− Φ(
√
nπ̂n/σπ)

σπφ(
√
nπ̂n/σπ)

+ oP (1),

which is regular with

Tn(π̂n, π̂βn, U) =

√
nπ̂βn
σπβ

1− Φ(
√
nπ̂n/σπ)

σπφ(
√
nπ̂n/σπ)

, T(0,0)(π̂, π̂β, U) =
π̂β

σπβ

1− Φ(π̂/σπ)

σπφ(π̂/σπ)
.

5.1 Local Asymptotic Rao-Blackwellization

We show that for any regular estimator of a weakly regular parameter, there exists

another regular estimator that is weakly better in terms of convex loss. A strict im-

provement is always possible unless our estimator is already a nonrandom transforma-

tion of an efficient estimator of the underlying parameter. In other words, whenever an

estimator contains “noise” irrelevant to the efficient estimation of ψ, one can always

construct another estimator that shares the same expectation and is more concentrated

around it. We demonstrate the power of this improvement in Section 6.

Theorem 6 (Local asymptotic Rao-Blackwellization). Let β : Pβ → B be weakly

regular and ψ : P → D a minimal underlying regular parameter for β. Let ψ̃n be a

regular sequence of estimators of ψ and β̃n = Tn(ψ̃n, U) + oP (1) be a regular sequence

of estimators of β with noise U ∼ U [0, 1]. Suppose that an efficient regular sequence

of estimators ψ̂n of ψ exists and T̄n(δ) := E[Tn(δ + Lη/
√
n, U)] exists as a Bochner

integral.25 Then T̄n(ψ̂n) is a better regular estimator than β̃n in the sense that for every

convex continuous loss function ` : B → R such that `(β̃n − β(Qn)) and `(T̄n(ψ̂n) −
β(Qn)) are asymptotically equiintegrable under Qn ∈PP,β,26

lim inf
n→∞

EQn,∗[`(β̃n − β(Qn))]− E∗Qn [`(T̄n(ψ̂n)− β(Qn))] ≥ 0.

Remark. Theorem 6 is a kind of admissibility requirement for a convex loss. Unlike

popular discussion of inadmissibility, however, it confines attention to the class of

regular estimators while providing an improvement method (Rao-Blackwellization) to

achieve “admissibility.” If B = R, T̄n first-order stochastically dominates Tn.

25See Bharucha-Reid (1972) for a discussion of Bochner integrals.
26Xn is asymptotically equiintegrable if limM→∞ lim supn→∞ E∗[|Xn|1{|Xn| > M}] = 0 (Van der

Vaart and Wellner, 1996, p. 421).
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Remark. Efficiency is usually justified for subconvex loss functions (Kosorok, 2008,

Theorem 18.4; Van der Vaart and Wellner, 1996, Theorem 3.11.5). Theorem 6 is in

the same spirit but restricts us to convex functions.27 This difference comes from the

fact that our best asymptotic distribution is a nonlinear transformation of Gaussian;

there is no symmetry of the distribution we can exploit to accommodate subconvexity.

Example 1 (Linear IV, continued). Suppose that the reduced-form errors are het-

eroskedastic, and the feasible GLS estimator (π̂βn, π̂n) is available. As seen in Exam-

ple 1 in the previous section, all of the 2SLS, GMM, Fuller, and unbiased estimators

are functions of the OLS estimator of the reduced-form coefficients. Then, Theorem 6

suggests in such cases that the use of the 2SLS estimator is asymptotically subopti-

mal in terms of the concentration of asymptotic distributions measured by convex loss

functions. In the case of 2SLS, one can construct a better estimator T̄n(π̂βn, π̂n) by

T̄n(πβ, π) := E
[([

π +
Uπ√
n

]′
E[zz′]

[
π +

Uπ√
n

])−1([
π +

Uπ√
n

]′
E[zz′]

[
πβ +

Uπβ√
n

])]
,

where (√
n(π̃βn − π̂βn)
√
n(π̃n − π̂n)

)
 

(
Uπβ

Uπ

)
.

In Section 6, we compare the performance of 2SLS and its improvement. Interestingly,

even with the oracle weighting matrix, GMM contains noise that can be removed if an

efficient estimator of the reduced-form coefficients is available.

Note that the limited information maximum likelihood (LIML) estimator is known

to have no moment (Chao et al., 2012), being outside the direct scope of Theorem 6, but

it can be said to be regular by definition. LIML estimates Ŵ (b) assuming homoskedas-

ticity, that is, ŴLIML(b) = n(Z ′Z)−1/σ̂2(b) where σ̂2(b) = En[(y − x′b)2] (Andrews,

2017). Since the second and cross moments of y and x can be consistently estimated,

LIML is asymptotically only a function of the OLS estimators of the reduced-form co-

efficients. Similarly, although the continuously updating GMM is suspected to have no

moment (Guggenberger, 2005), it is regular as it uses ŴCUGMM(b) = En[(y−x′b)2zz′]−1,

which, again, admits consistent estimation.

27Technically, there is no implication between convexity and subconvexity of a function. In this
context, subconvexity can be thought of as roughly weaker.
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5.2 Weakly Efficient Estimators of Weakly Regular Parameters

Backed up by this result, we define an efficiency concept for estimating a weakly regular

parameter. The idea is that when an estimator of a weakly regular parameter does not

admit an improvement by Theorem 6, we want to call such an estimator “efficient.”

The condition under which an estimator does not allow improvement is that it is

already a nonrandom transformation of an efficient estimator of the minimal sufficient

underlying regular parameter.

Definition (Weak efficiency for weakly regular parameter). A regular sequence of

estimators β̂n for a weakly regular parameter β is weakly (semiparametric) efficient at

P ∈ P relative to PP,β if there exist a minimal sufficient underlying regular parameter

ψ : P → D, its efficient sequence of estimators ψ̂n, and a sequence of nonrandom

measurable maps Tn : D→ B that is locally continuously root-n approximable at ψ(P )

tangentially to the range of ψ̇Pg + Lψ such that β̂n = Tn(ψ̂n) + oP (1) under every

Qn ∈PP,β.

Weak efficiency is related to classical efficiency. Consider two regular parameters,

ψ1 and ψ2, related to each other through a Hadamard differentiable function f , ψ2 =

f(ψ1). Van der Vaart (1998, Theorem 25.47) shows that efficiency of ψ̂1 for ψ1 implies

efficiency of f(ψ̂1) for ψ2. A weakly regular parameter β is often directly related to

an underlying regular parameter ψ by β = βψ(ψ). We define β̂ to be weakly efficient

if it is a nonrandom transformation of efficient ψ̂. The reason we do not require β̂ to

be specifically βψ(ψ̂) is for the impossibility of consistent and nonpivotal estimation

(Theorem 2). In principle, there is no necessity to treat uncertainty of ψ̂ the same way

we treat unknownness of ψ for the sake of a “good” estimator, if the relationship is

nonlinear. Thus, weakly efficient estimators are not unique, for which we call it weak.

A simple but useful byproduct of our definition is that, if at some Q ∈ Pβ the

transformation locally reduces to βψ and βψ is Hadamard differentiable, then a weakly

efficient estimator constructed for P ∈ P \ Pβ becomes efficient in the classical sense

under the “strong identification asymptotics” at Q ∈ Pβ, provided that ψ̂n remains

efficient in both asymptotics. This is a direct consequence of the delta method (Van der

Vaart, 1991a, 1998, Section 25.7). Therefore, weak efficiency can also be regarded as

a generalization of efficiency to discontinuous but locally continuously approximable

transformations of efficient estimators.
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Remark. Our definition of weak efficiency does not assume existence of moments. We

should note, however, that Theorem 6 does not apply to estimators with no moments.

Example 1 (Linear IV, continued). As explained earlier, the 2SLS, GMM, Fuller,

and unbiased estimators are inefficient in the presence of heteroskedasticity. If an effi-

cient estimator of the reduced-form coefficients is available, then the Rao-Blackwellized

2SLS, GMM, Fuller, and unbiased estimators conditional on this efficient estimator are

weakly efficient. See Section 6 for the comparison of the these estimators in simulation.

Example 2 (Nonlinear GMM, continued). If the entire moment function is the minimal

underlying parameter, the efficiency of an estimator in a nonlinear GMM model boils

down to the efficiency of the estimator of the moment function.

Remark. A shortcoming of our efficiency concept is that the constraint ψ̇Pg ∈ Dβ is not

explicitly accounted for. The convolution theorem requires the tangent set be a convex

cone. If it is a mere cone, the convolution theorem can only provide a lower bound on

variance (Van der Vaart, 1998, Theorem 25.20), no longer allowing Jensen’s inequality.

In our setup, the tangent set ṖP,β is a cone but not necessarily convex (Lemma S.1).

6 SIMULATION OF WEAK EFFICIENCY IN LINEAR IV MODELS

To illustrate weak efficiency, we conduct simulation studies of a linear IV model with

heteroskedasticity. In Example 1, we consider discrete instruments that collectively

take up only on four distinct values; since zi has a finite support, we can estimate the

heteroskedastic covariance matrix without imposing any parametric assumption. This

enables us to compute the feasible GLS estimator of the reduced-form coefficients with-

out further restricting the model and use it to construct the Rao-Blackwellized (RB)

improvements suggested by Theorem 6. We carry out simulation of four estimators:

the 2SLS, GMM, Fuller, and unbiased estimators.

We let n = 10,000, d = 1, k = 2, and zi = (zi1, zi2) where zij are independent

Bernoulli variables. We set β = 0 and π = (1, 1)/
√
n. For each of the 4 values of zi,

the covariance matrix of (ui, v
′
i) is drawn randomly and fixed at the beginning of the

simulation. We call this the model A and iterate it for 5,000 times. We compare three

estimators with their Rao-Blackwellization: 2SLS, two-step GMM, and Fuller. We also

compute HFUL for comparison, while we conjecture HFUL is non-regular.

Since unbiased estimators in overidentified models take complicated forms, we em-

ploy just-identified models for their performance evaluation. We take n = 10,000 and
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d = k = 1 and let zi distribute uniformly on {0, 1, 2}; then we compare unbiased and

Fuller to RB unbiased and RB Fuller, assuming that the sign of the first-stage coeffi-

cient is known (Andrews and Armstrong, 2017). We also provide 2SLS for comparison,

but note that 2SLS has no first moment in just-identified models. We set β = 1 and

π = 1/
√
n. Similarly as before, the covariance matrix of (ui, vi) is randomly determined

for each of the 3 values of zi and fixed afterwards. We call this the model B and iterate

it for 5,000 times for two specifications of heteroskedasticity.

To compute the RB versions of estimators, we derive the feasible GLS estimator of

the reduced-form coefficients. As classical GLS is considered within a single-equation

framework, we transform the two stages into one equation:[
Y

vec(X)

]
︸ ︷︷ ︸

Ỹ

=

[
Z

0

]
πβ +

[
0

1d ⊗ Z

]
π +

[
u

vec(v)

]
=

[
Z 0

0 1d ⊗ Z

]
︸ ︷︷ ︸

Z̃

[
πβ

π

]
︸ ︷︷ ︸

ψ

+

[
u

vec(v)

]
︸ ︷︷ ︸

e

.

Consequently, the conditional covariance matrix Ω of the error terms has nonzero

off-diagonal elements. We estimate it with the OLS coefficients and compute the

feasible GLS estimator for (πβ, π). Note that variances of OLS and GLS are given by

Var(ψ̂OLS | Z) = Z̃ ′Z̃
(∑n

i=1 e
2
i z̃iz̃

′
i

)−1
Z̃ ′Z̃ and Var(ψ̂GLS | Z) = (Z̃ ′Ω−1Z̃)−1. Since GLS

is efficient, by orthogonality Var(ψ̂OLS − ψ̂GLS | Z) = Var(ψ̂OLS | Z) − Var(ψ̂GLS | Z).

With this, we compute the conditional expectations of 2SLS and GMM conditional on

GLS using 100,000 draws from
(
Uπβ
Uπ

)
∼ N

([
π̂βFGLS,n

π̂FGLS,n

]
, Var(ψ̂OLS − ψ̂GLS | Z)

)
.

Given this, the RB 2SLS estimator of β is given by28

EU [((π̂FGLS,n + Uπ)′(Z ′Z)(π̂FGLS,n + Uπ))−1(π̂FGLS,n + Uπ)′(Z ′Z)(π̂βFGLS,n + Uπβ)],

where EU denotes expectation with respect to (Uπβ, Uπ). The RB two-step GMM

estimator of β is given by

EU [((π̂FGLS,n + Uπ)′(Z ′Z)Ŵ (Uπβ, Uπ)(Z ′Z)(π̂FGLS,n + Uπ))−1

((π̂FGLS,n + Uπ)′(Z ′Z)Ŵ (Uπβ, Uπ)(Z ′Z)(π̂βFGLS,n + Uπβ))],

where Ŵ (Uπβ, Uπ) = En[(y − x′(π̂FGLS,n + Uπ)→(π̂βFGLS,n + Uπβ))2zz′]. The RB Fuller

estimator of β is given by

28Note that Uπβ and Uπ are already denormalized by
√
n.
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(a) Histograms of 2SLS and RB 2SLS. (b) Histograms of GMM and RB GMM.

(c) Histograms of Fuller and RB Fuller.

Figure 1: Distributions of 2SLS, GMM, and Fuller, and their Rao-Blackwellization
under heteroskedasticity (model A). Simulated with 10,000 observations and 5,000
iterations. Clusters at the boundaries indicate observations outside of the range.

EU
[(

C

n
X ′X +

[
1− C

n

]
(π̂FGLS,n + Uπ)′(Z ′Z)(π̂FGLS,n + Uπ)

)−1

(
C

n
X ′y +

[
1− C

n

]
(π̂FGLS,n + Uπ)′(Z ′Z)(π̂βFGLS,n + Uπβ)

)]
.

The RB unbiased estimator of β does not require Monte Carlo computation of expecta-

tions. Andrews and Armstrong (2017) show uniqueness of the unbiased estimator; the

RB version of the unbiased estimator constructed with OLS equals the one constructed

with GLS,
√
nπ̂βFGLS,n

σ̂πβ,FGLS,n

1−Φ(
√
nπ̂FGLS,n/σ̂π,FGLS,n)

σ̂π,FGLS,nφ(
√
nπ̂FGLS,n/σ̂π,FGLS,n)

.

Figure 1a is the histogram of 2SLS and RB 2SLS in model A. The vertical dotted

line indicates the true value, β = 0. It shows that the distribution of RB 2SLS is more

concentrated than 2SLS, illustrating the power of LAR. Note that since Rao-Black-
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wellization does not affect its mean, both estimators have the same bias. Figure 1b is

the histogram of GMM and RB GMM for the same run as Figure 1a. Their distribu-

tions are very close to their 2SLS counterparts. Figure 1c is the histogram of Fuller,

RB Fuller, and HFUL for the same run. Due to the shrinkage property, RB Fuller is

very concentrated.

To connect to Theorem 6, consider two loss functions ` : R→ R such that `(x) = x2

and `(x) = |x|. That is, the expected losses are measured by the mean squared error

(MSE) and mean absolute error (MAE).29 The MSE of 2SLS is 0.36 while that of RB

2SLS is 0.04; the “MSE” of GMM is 0.61 while that of RB GMM is 0.03; the MSE of

Fuller is 0.07 while that of RB Fuller is 0.01 and that of HFUL is 0.22. The MAE of

2SLS is 0.42 while that of RB 2SLS is 0.19; the “MAE” of GMM is 0.46 while that of

RB GMM is 0.17; the MAE of Fuller, RB Fuller, and HFUL are 0.21, 0.07, and 0.42.

LAR (Theorem 6) guarantees that the MSE of the RB versions never exceeds that of

the original ones, at least asymptotically. It is, therefore, preferable to use a weakly

efficient estimator whenever available.

The second simulation is the comparison of unbiased and Fuller with RB unbiased

and RB Fuller. We use a just-identified model since the closed-form expression is

available in Andrews and Armstrong (2017).30 We also present 2SLS for comparison,

although 2SLS is not subject to LAR due to the lack of the first moment;31 GMM

coincides with 2SLS as it is just-identified. Figures 2a and 2b are the histograms of

unbiased and RB unbiased, and of Fuller and RB Fuller in model B with one type

of heteroskedasticity, which show slight improvement by LAR; Figures 2c and 2d are

the histograms with another type of heteroskedasticity. Figures 2c and 2d show that

improvement of RB unbiased estimators can vary. Note that Fuller is biased under

the employed weak identification asymptotics. The vertical dotted lines represent the

true value, β = 1. With d = k = 1, the unbiased estimator does not have a second

moment (Andrews and Armstrong, 2017), so we use MAE as the measure of dispersion.

Although in Figure 2a the distribution of RB unbiased does not necessarily look more

concentrated, its MAE is 1.0, improving from 1.1 of unbiased. Table 1 summarizes

losses; it confirms Theorem 6, indicating reduction in convex losses from LAR.

29Although our simulation suggests that two-step GMM has as many moments as 2SLS, it is not
known theoretically. Therefore, we place double quotes around MSE and MAE of GMM estimators.

30Unbiased estimation itself is possible in overidentified models (Andrews and Armstrong, 2017).
31Technically, 2SLS may have moments conditional on GLS, in which case Rao-Blackwellization

makes some sense. Numerical Rao-Blackwellization indicates numerical losses can go either upward
or downward.
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(a) Histograms of unbiased, RB unbiased,
and 2SLS for one heteroskedasticity.

(b) Histograms of Fuller, RB Fuller, and
HFUL for one heteroskedasticity.

(c) Histograms of unbiased, RB unbiased,
and 2SLS for another heteroskedasticity.

(d) Histograms of Fuller, RB Fuller, and
HFUL for another heteroskedasticity.

Figure 2: Distributions of unbiased, RB unbiased, 2SLS, Fuller, RB Fuller, and HFUL
under heteroskedasticity (model B). Simulated with 10,000 observations and 5,000
iterations. Clusters at the boundaries indicate observations outside of the range.

Note that the conditional moment assumption, E[ui | zi] = 0 and E[vi | zi] = 0,

plays a crucial role in this exercise. OLS is inefficient because this assumption holds;

if we only have unconditional moment restrictions, E[uiz
′
i] = 0 and E[viz

′
i] = 0, then

GLS is not consistent to what they define. Another important assumption is the

availability of the efficient estimator, GLS. A notable example in which the form of

heteroskedasticity is known a priori is when yi is binary and one has a conditional

moment restriction, E[yi | xi] = f(xi); the form of heteroskedasticity is uniquely deter-

mined by f as E[(yi− f(xi))
2 | xi] = f(xi)− f(xi)

2. If f can be estimated, for example

for being linear, one may use feasible GLS with no additional loss of generality. In

other linear models with an unknown form of heteroskedasticity, feasible GLS with a
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Table 1: Mean absolute errors (MAEs) and mean squared errors (MSEs).

Model A Model B
(1) (2) (3)

MAE MSE MAE MSE MAE MSE

2SLS 0.42 0.36 ∞ ∞ ∞ ∞
RB 2SLS 0.19 0.04 ∞ ∞ ∞ ∞

GMM “0.46” “0.61” ∞ ∞ ∞ ∞
RB GMM “0.17” “0.03” ∞ ∞ ∞ ∞

Unbiased — ∞ 1.15 ∞ 5.28 ∞
RB unbiased — ∞ 1.04 ∞ 1.59 ∞

Fuller 0.21 0.07 1.357 1.94 1.31 2.47
RB Fuller 0.07 0.01 1.356 1.88 1.06 1.27

HFUL 0.42 0.22 1.62 2.85 1.41 2.64

Observations 10,000 10,000 10,000 10,000 10,000 10,000
Iterations 5,000 5,000 5,000 5,000 5,000 5,000

* (1) Randomly generated heteroskedasticity for Figures 1a to 1c; (2) for Figures 2a and 2b; (3) for

Figures 2c and 2d. Quotes indicate that their finiteness is not known.

nonparametric estimator is available under various assumptions (Carroll, 1982; Robin-

son, 1987; Newey, 1994). See also Romano and Wolf (2017) for recent reinvestigation

of the use of GLS in practice.

7 CONCLUSION

This paper studies weak identification in semiparametric models and investigates effi-

cient estimation. First, we show that weak identification is captured by the notion of

weak regularity with which the parameter value depends on the score asymptotically.

This dependence is homogeneous of degree zero and nonlinear, leading to the impos-

sibility of consistent estimation and inference and equivariant estimation. Then, we

show that for each weakly regular parameter there exists an underlying parameter that

is regular and fully characterizes the weakly regular parameter locally. As underlying

regular parameters are not unique, we stipulate two desirable properties of an underly-

ing parameter, sufficiency and minimality. The minimal sufficient underlying regular

parameter contains the necessary and sufficient amount of information of the weakly

regular parameter in the tangent space.

Regarding the estimation of a weakly regular parameter as the estimation of the
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minimal sufficient underlying parameter plus its transformation, we argue that the

“efficiency” of the final estimator of a weakly regular parameter can be cast in terms of

the involvement of noise in the estimator of the underlying parameter. When such noise

exists, we can construct its improvement by taking a conditional expectation of the

estimator, shown as local asymptotic Rao-Blackwellization. Intuitively, this exploits the

property that an efficient estimator of a regular parameter is “asymptotically sufficient”

and applies the Rao-Blackwell theorem to the asymptotic representations of the local

expansion.32 Simulation is carried out in a linear IV model, demonstrating that the

2SLS, GMM, Fuller, and unbiased estimators can be made more concentrated given

the availability of a (feasible) GLS estimator of the reduced-form coefficients.

APPENDIX

Proof of Lemma 1. Since ṖP is assumed to be linear, if g ∈ ṖP then ag ∈ ṖP for every

a ∈ R. If g is induced by a path t 7→ Qt and a > 0, then ag can be induced by the path

t 7→ Qat, which is the same path up to a scaled index. Therefore, if Qt ∈ PP \PP,β

then Qat ∈ PP \PP,β, implying that if g ∈ ṖP \ ṖP,β then ag ∈ ṖP \ ṖP,β. Being

defined as a difference between a linear space and a cone, ṖP,β is a cone. �

Proof of Theorem 2. Let β : Pβ → B be weakly regular and βP nonconstant.

The first assertion. Suppose that β̂n : X n → B is a consistent sequence of estima-

tors, or even weaker, that there exist two paths Qn1, Qn2 ∈PP,β inducing g1, g2 ∈ ṖP,β
such that βP (g1) 6= βP (g2) and β̂n→Qnj∗ βP (gj) under each Qnj ∈ {Qn1, Qn2}. De-

fine 2ε := ‖βP (g1) − βP (g2)‖B. Denote by Qn
nj the product measure of Qnj on the

product sample space X n. By the portmanteau theorem (Van der Vaart and Well-

ner, 1996, Theorem 1.3.4) and the assumption of convergence in outer probability,

lim supn→∞Q
n
n1(‖β̂n− βP (g1)‖∗B ≥ ε) ≤ 0 while lim infn→∞Q

n
n2(‖β̂n− βP (g1)‖∗B ≥ ε) ≥

lim infn→∞Q
n
n2(‖β̂n − βP (g1)‖B,∗ > ε) ≥ 1. Therefore, Qn

n2 is not contiguous to Qn
n1.

Being paths, however, Qn
n2 must be contiguous to P n and P n to Qn

n1 (Van der Vaart

and Wellner, 1996, Lemma 3.10.11 and Theorem 3.10.9), hence a contradiction.

The second assertion. Let H0 : β ∈ B0 and H1 : β ∈ B1 be the null and alternative

hypotheses such that B0 and B1 are nonempty. Suppose that φn : X n → [0, 1] is

a consistent sequence of tests of H0 of level α < 1 so that there exist two paths

32Cattaneo et al. (2012) also exploits “asymptotic sufficiency” of efficient estimators in semipara-
metric models. See also Le Cam and Yang (2000) and Van der Vaart (2002) for related discussion of
“asymptotic sufficiency” in parametric models.
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Qn0, Qn1 ∈ PP,β with βP (g0) ∈ B0 and βP (g1) ∈ B1 such that φn →Qn0∗ α and

φn →Qn1∗ 1. Then by the same reasoning a contradiction follows.

The third assertion. Let β̂n be an equivariant-in-law sequence of estimators of β

with a separable limit law, that is, there exists a fixed separable Borel probability

measure L on B such that β̂n − β(Qn)
Qn L for every Qn ∈ PP,β. Pick g1, g2 ∈ ṖP,β

such that βP (g1) 6= βP (g2). Denote β1 := βP (g1) and β2 := βP (g2). Since ṖP,β is a cone

(Lemma 1), ag1 and ag2 are also in ṖP,β for every a > 0 and by homogeneity we have

βP (agj) = βj. For each positive integer k, take Qnk1, Qnk2 ∈ PP,β to be paths that

induce scores g1/k and g2/k. Let dQn denote the metric that metrizes weak topology

on B under Qn toward separable limits (Van der Vaart and Wellner, 1996, p. 73). For

each k, let nk be such that for every n ≥ nk,∫
X

[
dQ

1/2
nk1 − dP 1/2

1/
√
n

− 1

2

g1

k
dP 1/2

]2

∨
∫
X

[
dQ

1/2
nk2 − dP 1/2

1/
√
n

− 1

2

g2

k
dP 1/2

]2

<
1

k
,

dQnk1
(
β̂n − β(Qnk1), L

)
∨ dQnk2

(
β̂n − β(Qnk2), L

)
<

1

k
.

Then one can take n′k so that n′k ≥ nk and n′k+1 > n′k for every k. Construct two paths

Q′n1 and Q′n2 by Q′nj = Qnknj where kn satisfies n′kn ≤ n < n′kn+1. Then Q′nj →DQM P

with scores equal to zero and β̂n − β(Q′nj) converges weakly to L under Q′nj. Now we

want to show that dQ′nn2/dQ
′n
n1 converges to 1 and invoke Le Cam’s third lemma. For

this, we adopt the same proof strategy as Van der Vaart (1998, Theorem 7.2). Observe

that EQ′n1
[
n
(
1 − dQ

′1/2
n2

dQ
′1/2
n1

)2] ≤ ∫
X

[dQ′1/2n1 −dQ
′1/2
n2

1/
√
n

]2→ 0. By Taylor’s theorem, log x2 =

−2(1−x)−(1−x)2+(1−x)2R(1−x) for some functionR : R→ R such thatR(1−x)→ 0

as x→ 1. Then, log
dQ′nn2
dQ′nn1

(X1, . . . , Xn) = log
(dQ′n2
dQ′n1

(X1) · · · dQ
′
n2

dQ′n1
(Xn)

)
=
∑n

i=1 log
dQ′n2
dQ′n1

=

−2
∑n

i=1 Wni−
∑n

i=1 W
2
ni+

∑n
i=1W

2
niR(Wni), where Wni := 1−dQ′1/2n2 /dQ

′1/2
n1 . We argue

that all three terms converge to zero in probability. Under Q′n1,∣∣∣∣∣E
n∑
i=1

Wni

∣∣∣∣∣ = n

∣∣∣∣∣1−
∫
dQ
′1/2
n2

dQ
′1/2
n1

dQ′n1

∣∣∣∣∣ ≤ 1

2

∫ [
dQ
′1/2
n1 − dQ

′1/2
n2

1/
√
n

]2

−→ 0,

Var

(
n∑
i=1

Wni

)
≤ E[nW 2

ni] = E
[
n

(
1− dQ

′1/2
n2

dQ
′1/2
n1

)2]
−→ 0.

These results imply that the expectation and variance of
∑
Wni converge to zero; hence

it converges to zero in probability. The second result implies that nW 2
ni converges to

zero in mean; by the law of large numbers
∑
W 2
ni converges to zero in probability. By
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Markov’s inequality, Pr
(
max1≤i≤n |Wni| > ε

)
≤ nPr(|Wni| > ε) ≤ nPr(nW 2

ni > nε2) ≤
E[nW 2

ni]

ε2
→ 0 for every ε > 0. Thus, max1≤i≤n |Wni| converges to zero in probability,

meaning that max1≤i≤n |R(Wni)| converges to zero in probability as well. Therefore, the

third term
∑
W 2
niR(Wni) converges to zero in probability. We conclude that dQ′nn2/dQ

′n
n1

converges to 1 in probability under Q′n1. Since L is separable, by Slutsky’s lemma

(Van der Vaart and Wellner, 1996, Example 1.4.7),
(
β̂n,

dQ′nn2
dQ′nn1

) Q′n1 (β1 + L, 1). By Le

Cam’s third lemma (Van der Vaart and Wellner, 1996, Theorem 3.10.7), (β2 +L)(B) =

E1{β1 +L ∈ B}1 = (β1 +L)(B) for every Borel B ⊂ B, which contradicts β1 6= β2. �

Proof of Lemma 3. Denote by D the Banach space of P -square integrable functions

on X and define ψ : P → D by ψ(Q) = dQ1/2/dP 1/2. Note that ψ is regular with

derivative ψ̇P : ṖP → D, ψ̇Pg = g. Thus, we have βP,ψ = βP . �

Proof of Theorem 4. Let D = L2(P ) and define ψ : P → D by ψ(Q) = 2ΠβdQ
1/2/dP 1/2.

Then ψ is regular with the derivative ψ̇P : ṖP → D, ψ̇Pg = Πβg. Note that βP (g) =

βP (Πβg). This implies that ψ is an underlying regular parameter for β and that

N(ψ̇P ) = N(βP ), which implies minimal sufficiency of ψ. �

Proof of Proposition 5. Define Tδ,n : D × [0, 1] → B by Tδ,n(δ, u) := Tn
(
δ + δ√

n
, u
)
.

Then, β̂n = Tψ(P ),n(
√
n(ψ̂n − ψ(P )), U) + oP (1). By the extended continuous mapping

theorem (Van der Vaart and Wellner, 1996, Theorem 1.11.1 and Problem 1.11.1), the

claim follows. �

Proof of Theorem 6. Observe that T̄n is locally continuously root-n approximable at

ψ(P ) tangentially to the range of ψ̇Pg+Lψ with the approximating function T̄ψ(P )(δ) :=

E[Tψ(P )(δ + Lη, U)]; hence T̄n(ψ̂n) is regular. For Qn ∈PP,β, write

E∗[`(β̃n−β)]−E∗[`(T̄n(ψ̂n)−β)] = E∗[`(β̃n−β)]−E[`(Tψ(P )(ψ̇Pg+Lψ +Lη, U)−β)]

+ E[E[`(Tψ(P )(ψ̇Pg + Lψ + Lη, U)− β)− `(T̄ψ(P )(ψ̇Pg + Lψ)− β) | Lψ]]

+ E[`(T̄ψ(P )(ψ̇Pg + Lψ)− β)]− E∗[`(T̄n(ψ̂n)− β)].

The first difference converges to zero by Proposition 5 and Van der Vaart and Wellner

(1996, Theorem 1.11.3); the second difference is nonnegative since the inner conditional

expectation is nonnegative by a generalized Jensen’s inequality (To and Yip, 1975); the

third difference converges to zero by approximability of T̄n, the extended continuous

mapping theorem (Van der Vaart and Wellner, 1996, Theorem 1.11.1 and Problem

1.11.1), and Van der Vaart and Wellner (1996, Theorem 1.11.3). �
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S.1 SUPPORTIVE RESULTS

This section provides supportive results. The following lemma is characterization of

the minimal tangent cone.

Lemma S.1. The following hold.

i. N(βP ) is a linear space.

ii. If P ∈ P \ Pβ, then N(βP ) ⊂ ṖP \ ṖP,β.

iii. If P ∈ P \ Pβ, then g ∈ ṖP,β implies Πβg 6= 0.

Proof. (i) Trivially, 0 ∈ N(βP ). The definition of the kernel implies that if g̃ ∈ N(βP ),

then −g̃ ∈ N(βP ). Take g̃ ∈ N(βP ) and a > 0. Since ṖP,β is a cone (Lemma 1) and

βP is homogeneous of degree zero, βP (g) = βP (g/a) = βP (g/a + g̃) = βP (g + ag̃) for

every g ∈ ṖP,β. This means ag̃ ∈ N(βP ). Therefore, N(βP ) is linear.

(ii) If P ∈ P \ Pβ, then 0 /∈ ṖP,β. Since g ∈ N(βP ) ∩ ṖP,β implies βP (g) =

βP (g − g) = βP (0), N(βP ) ∩ ṖP,β must be empty.

(iii) If Πβg = 0 then g ∈ N(βP ), which implies g /∈ ṖP,β by (ii). �

The following theorem characterizes minimal sufficient underlying regular parame-

ters.

Theorem S.2 (Characterization of minimal sufficient underlying regular parameter).

Let β : Pβ → B be weakly regular and ψ : P → D a sufficient underlying regular

parameter for β. Then ψ is minimal if and only if for any sufficient underlying regular

parameter φ : P → E for β on a Banach space E there exists a linear map τ : E→ D
such that

τ(φ̇Pg) = ψ̇Pg for every g ∈ ṖP .
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Remark. Theorem S.2 can be understood as “almost uniqueness” of observational in-

formation regarding minimal sufficient underlying regular parameters. If the linear

map τ between two minimal sufficient underlying regular parameters is bicontinuous,

efficiency in one parameterization implies efficiency in the other (see, e.g., Van der

Vaart, 1991, 1998, Section 25.7).

Proof. Sufficiency. Assume that for any sufficient underlying regular parameter φ :

P → E for β there exists a map τ : E→ D such that τ(φ̇Pg) = ψ̇Pg for every g ∈ ṖP,β.

This means that N(φ̇P ) ⊂ N(ψ̇P ). Take φ to be minimal; then N(βP ) = N(φ̇P ) ⊂
N(ψ̇P ). On the other hand, since ψ is assumed to be a sufficient underlying parameter,

we have N(βP ) ⊃ N(ψ̇P ).

Necessity. Assume that ψ : P → D is a minimal sufficient underlying regular

parameter for β. Take φ : P → E to be another sufficient underlying regular parameter

for β. Then βP,ψ(ψ̇Pg) = βP,φ(φ̇Pg) for every g ∈ ṖP,β and N(ψ̇P ) = N(βP ) ⊃ N(φ̇P ).

The first property implies ψ̇Pg ∈ β−1
P,ψβP,φ(φ̇Pg) for every g ∈ ṖP,β. The second property

implies that if φ̇Pg1 = φ̇Pg2 then ψ̇Pg1 = ψ̇Pg2. Conclude that there exists a linear

map τ : E0 → D such that ψ̇Pg = τ(φ̇Pg) for g ∈ Ṗ0 where E0 := φ̇P (ṖP,β). One can

extend τ on the whole of E by letting τ(e) := τ(ΠE0e). �

S.2 GENERAL WEAK LINEAR IV MODELS

This section analyzes the general linear IV model from Example 1 in which π ap-

proaches a rank deficient matrix instead of zero. Recall{
yi = z′iψ1 + ui, E[ziui] = 0,

x′i = z′iψ2 + v′i, E[ziv
′
i] = 0,

where β = ψ→2 ψ1. We are interested in a path Qn that approaches a point of identifi-

cation failure P such that

ψ2(Qn) = π +
π̇√
n

+ o

(
1√
n

)
, β(Qn) = β +

β̇√
n

+ o

(
1√
n

)
,

ψ1(Qn) = ψ2(Qn)β(Qn) = πβ +
π̇β + πβ̇√

n
+ o

(
1√
n

)
.

Apply the singular value decomposition to π to write π = USV ′ for a k×k orthogonal

matrix U , a k× d nonnegative diagonal matrix S, and a d× d orthogonal matrix V . If

β is weakly regular, then the number ` of positive elements of S is strictly less than d.
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The regression equations can then be written as{
yi = z̃′iψ̃1 + ui,

x̃′i = z̃′iψ̃2 + ṽ′i,

for ψ̃1 = Λ−1U ′ψ1, ψ̃2 = Λ−1U ′ψ2V , β̃ = V ′β, z̃i = ΛU ′zi, x̃i = V ′xi, ṽi = V ′vi, and

Λ−1 is a positive diagonal matrix such that the first ` diagonal entries are inverses of

positive entries of S and all other diagonal entries are one. Since ψ2(P ) = π is known

in the limit, we may assume without loss of generality that π is a diagonal matrix

whose first ` elements are one and all others zero.

Due to this structure of π, the first ` elements of β are uniquely determined by

ψ1(P ) = πβ and ψ2(P ) = π regardless of the score. On the other hand, the remaining

elements of β must be determined by the local parameters ψ̇1,P (g) = π̇β + πβ̇ and

ψ̇2,P (g) = π̇. For β to be weakly regular, the remaining components of β must be

uniquely determined by the score. Since Aπ = 0 for a k × k diagonal matrix A whose

first ` diagonal elements are zero and remaining elements one, if the last d− ` elements

of β are uniquely determined by ψ̇2,P (g) = π̇ and Aψ̇1,P (g) = Aπ̇β, then β is weakly

regular; this is the case when the lower bottom (k − `)× (d− `) matrix of π̇ is of full

column rank. We henceforth make this assumption.

In order to see when the first ` elements of β become regular, we aim to represent

the first ` elements of β̇ as a continuous linear map of the score. Similarly as Example 1,

the score is given by

g = guvz − z′(π̇β + πβ̇)
dPuvz,u
dP

− z′π̇ dPuvz,v
dP

and we have EP [zug] = EP [zz′](π̇β + πβ̇) and EP [zv′g] = EP [zz′]π̇. Denote by β` and

β−` the first ` and last d− ` elements of β and π̇ =:
[
π̇1 π̇3
π̇2 π̇4

]
where π̇1 is `× `. Since β`

does not depend on the score, we may take its value as granted. Then

EP

[
z

(
u− v′

[
β`

0

])
g

]
= EP [zz′]

(
π̇

[
0

β−`

]
+ πβ̇

)

= EP [zz′]

([
0 π̇3

0 π̇4

][
0

β−`

]
+

[
I` 0

0 0

]
β̇

)
.

Therefore, if π̇3 is zero, then with the k × k diagonal matrix B whose first ` diagonal

3



elements are one and all others zero, one obtains

BEP [zz′]−1EP

[
z

(
u− v′

[
β`

0

])
g

]
= BEP [zz′]−1πβ̇.

Thus, one can represent the first ` components of β̇ as a linear functional of the score.

Otherwise, one needs to know β−` in order to eliminate π̇β, suggesting that β` might

not be regular.

Now we investigate the tangent spaces. With these notations, we have

βP (g) =

[
β`

π̇→4 (π̇4β−`)

]
,

where π̇4 and π̇4β−` are calculated from

π̇ = EP [zz′]−1EP [zv′g],

[
0

π̇4β−`

]
= AEP [zz′]−1EP

[
z

(
u− v′

[
β`

0

])
g

]
,

whence we may guess the minimal sufficient underlying parameter. Denote by ψ1,`

and ψ1,−` the first ` and last k − ` components of ψ1 and ψ2 =:
[
ψ2,1 ψ2,2

ψ2,3 ψ2,4

]
for an `× `

submatrix ψ2,1. Then the parameters ψ1,−` and ψ2,4 that induce local parameters π̇4β−`

and π̇4 can be guessed to constitute the minimal sufficient underlying parameter. To

compute the nuisance tangent space, recall the score formula

g = guvz − z′`(π̇1β` + π̇3β−`)
dPuvz,u
dP

− z′−`(π̇2β` + π̇4β−`)
dPuvz,u
dP

− z′πβ̇ dPuvz,u
dP

− (z′`π̇1 + z′−`π̇2)
dPuvz,v,`
dP

− (z′`π̇3 + z′−`π̇4)
dPuvz,v,−`

dP
,

where z` and z−` denote the first ` and last k − ` components of z. It is clear that

adding the scores

guvz, z′πC
dPuvz,u
dP

, z′`Dβ`
dPuvz,u
dP

+ z′`D
dPuvz,v,`
dP

, z′−`Eβ`
dPuvz,u
dP

+ z′−`E
dPuvz,v,`
dP

for any d× 1 vector C, `× ` matrix D, and (k − `)× ` matrix E does not change the

value of β−`; therefore, they are in N(βP ). Also, adding the score

z′`F
dPuvz,v,−`

dP

for any ` × (d − `) matrix F would change the values of π̇3 and β̇ (depending on the
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value of β−`) but does not change the value of β−` itself; therefore, it is in N(βP ) as

well.

S.3 PARTIAL WEAK IDENTIFICATION

It has been observed that weak identification and partial identification in linear IV

models arise from similar sources (Poskitt and Skeels, 2013). In the context of weak

instruments, if the first-stage coefficients approach degeneracy too quickly, then even

if the structural parameter β is identified at each n, it suffers partial identification in

the corresponding local expansion (Section S.3). In extremum estimation models, Cox

(2017) uses a higher-order Taylor expansion to characterize the asymptotic behavior

of the extremum estimator under the asymptotic embedding he calls “super-weak se-

quences of parameters” which cause similar phenomena. Another example of partial

weak identification appears in DSGE models; Andrews and Mikusheva (2016) note in

their supplementary material that a simple DSGE model approaches a limit at which

only four out of six parameters are identified.

In this section, we explain how these cases involve partial identification in the local

expansion. Partial identification in the local expansion means that given the model

score, which summarizes all information of the first-order approximation of the model,

the value of the parameter of interest is not pinned down uniquely.

The first example is when the first-stage coefficients in the linear IV model approach

zero faster than root-n. The second example is the DSGE model considered in Andrews

and Mikusheva (2016).

Example 1 (Linear IV with partial weak identification, continued). If the first-stage

coefficients converge to degeneracy faster than root-n, the structural parameter β suf-

fers partial identification in the limit. Let d = k = 2 and (u, v) ∼ N(0, I3), and consider

the embedding

πn =

(
1√
n

+ 1
n

1√
n

1√
n

1√
n

+ 1
n

)
.

The first-stage coefficients πn are of full rank at each n and approach zero with rate
√
n,

and
√
nπ approaches a degenerate matrix π0 := ( 1 1

1 1 ) with rate n. The corresponding

path is given by

dQn =
1

(2π)3/2
exp

(
−(y − z′πnβ)2 + (x′ − z′πn)(x′ − z′πn)′

2

)
.
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From here, the score can be calculated as

√
n
dQn − dP

dP
−→ g = z′π0βy + z′π0x = z′

(
β1 + β2

β1 + β2

)
y + z′

(
1 1

1 1

)
x.

Therefore, only the combination β1 +β2 is identified as a function of the score, but not

β1 and β2 separately.

Example S.1 (Full information DSGE model). Consider the simple DSGE model in

Andrews and Mikusheva (2014) and Andrews and Mikusheva (2016, Supplementary

Appendix):

bEtπt+1 + κxt − πt = 0, (Phillips curve)

rt − Etπt+1 − ρ∆at = Etxt+1 − xt, (Euler equation)

b−1πt + ut = rt, (Monetary policy)

where the shock processes follow{
∆at = ρ∆at−1 + εa,t,

ut = δut−1 + εu,t,

(
εa,t

εu,t

)
∼ N

(
0,

[
σ2
a 0

0 σ2
u

])
i.i.d.

These equations reduce to

mt1 :=
εa,t
σa

=
1

σa

(1− ρb)(1− δb)
b2κ

(b+ κ− ρb)
ρ(ρ− δ)

[
πt − ρπt−1 −

κ

1− δb
(xt − ρxt−1)

]
,

mt2 :=
εu,t
σu

=
1

σu

(1− ρb)(1− δb)
b2κ

(b+ κ− δb)
(ρ− δ)

[
πt − δπt−1 −

κ

1− ρb
(xt − δxt−1)

]
,

which are i.i.d. We are concerned about identification when ρ is close to δ, that is, ρT =

δ + h/
√
T . Other parameters are left unspecified; thus, we consider bT = b + hb/

√
T ,

κT = κ+ hκ/
√
T , σa,T = σa + ha/

√
T , and σu,T = σu + hu/

√
T .

Since (mt1,mt2) is OP (1), the terms in the square brackets stay OP (1/
√
T ). In light

of this, define
zt√
T

:= πt − δπt−1 −
κ

1− δb
(xt − δxt−1).

Then the asymptotic representation of the bracket terms can be given by

πt − ρTπt−1 −
κT (xt − ρTxt−1)

1− δbT
=

zt√
T
− 1√

T

[
hκ
κ

+
δhb

1− δb

]
κ(xt − δxt−1)

1− δb

6



− h√
T

[
πt−1 −

κxt−1

1− δb

]
+ oP

(
1√
T

)
,

πt − δπt−1 −
κT (xt − δxt−1)

1− ρT bT
=

zt√
T
− 1√

T

hb+ δhb
1− δb

κ(xt − δxt−1)

1− δb

− 1√
T

hκ
κ

κ(xt − δxt−1)

1− δb
+ oP

(
1√
T

)
.

The distribution of zt will be uniquely determined by that of (mt1,mt2) ∼ QT . Let P be

the limit distribution that yields ρ = δ ∈ (0, 1) (but satisfies 1− δb 6= 0, b+κ− δb 6= 0,

b 6= 0, κ 6= 0, σa > 0, σu > 0). Denote the weak limit of (mt1,mt2) by

m1 :=
1

σa

(1− δb)2

b2κ

b+ κ− δb
δ︸ ︷︷ ︸

A

[
z

h
− π−1 +

κx−1

1− δb

]
,

m2 :=
1

σu

(1− δb)2

b2κ
(b+ κ− δb)︸ ︷︷ ︸
B

[
z

h
− bκ(x− δx−1)

(1− δb)2

]
.

Finally, define the sequence of moments by

mt1,T :=
(1− ρT bT )(1− δbT )

σa,T b2
TκT

(bT + κT − ρT bT )

ρT (ρT − δ)

[
πt − ρTπt−1 −

κT (xt − ρTxt−1)

1− δbT

]
,

mt2,T :=
(1− ρT bT )(1− δbT )

σu,T b2
TκT

(bT + κT − δbT )

(ρT − δ)

[
πt − δπt−1 −

κT (xt − δxt−1)

1− ρT bT

]
,

After tedious algebra, one can compute the score for this general path as

√
T
[
dQT (mt1,T ,mt2,T )− dP (m1,m2)

]
−→ g = gQ +

dP1

dP
m1

[
−ha
σa
− bh+ 2δhb

1− δb
− 2hb

b
− hκ

κ
+
hb + hκ − bh− δhb

b+ κ− δb
− h

δ

]
+
dP1

dP
A

[
−1

h

(
hκ
κ

+
δhb

1− δb

)
κ(x− δx−1)

1− δb

]
+
dP2

dP
m2

[
−hu
σu
− bh+ 2δhb

1− δb
− 2hb

b
− hκ

κ
+
hb + hκ − δhb
b+ κ− δb

]
+
dP2

dP
B

[
−1

h

(
hκ
κ

+
δhb

1− δb

)
κ(x− δx−1)

1− δb

]
=: gQ +

dP1

dP
m1H1 +

dP1

dP
(x− δx−1)HA +

dP2

dP
m2H2 +

dP2

dP
(x− δx−1)HB.

Thus, by knowing the model score g we can recover only up to four local parameters

H1, H2, HA, and HB but not all of six parameters; there is no map βP : ṖP,β → R6
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that recovers six parameters.

REFERENCES

Andrews, I. and A. Mikusheva (2014): “Weak Identification in Maximum Like-
lihood: A Question of Information,” American Economic Review: Papers and Pro-
ceedings, 104, 195–199.

——— (2016): “A Geometric Approach to Nonlinear Econometric Models,” Econo-
metrica, 84, 1249–1264.

Cox, G. (2017): “Weak Identification in a Class of Generically Identified Models with
an Application to Factor Models,” Ph.D. thesis, Yale University.

Poskitt, D. S. and C. L. Skeels (2013): “Inference in the Presence of Weak
Instruments: A Selected Survey,” Foundations and TrendsR© in Econometrics, 6,
1–99.

van der Vaart, A. W. (1991): “Efficiency and Hadamard Differentiability,” Scan-
dinavian Journal of Statistics, 18, 63–75.

——— (1998): Asymptotic Statistics, Cambridge: Cambridge University Press.

8


	Introduction
	Weak Identification in Economics
	Weak Identification in Semiparametric Models
	Weakly Regular Parameters
	Fundamental Impossibility
	Underlying Regular Parameters

	Minimal Sufficient Underlying Regular Parameters
	Nuisance Tangent Spaces
	Sufficiency and Minimality of Underlying Regular Parameters

	Weak Efficiency for Weakly Regular Parameters
	Local Asymptotic Rao-Blackwellization
	Weakly Efficient Estimators of Weakly Regular Parameters

	Simulation of Weak Efficiency in Linear IV Models
	Conclusion
	Supportive Results
	General Weak Linear IV Models
	Partial Weak Identification

